summaryrefslogtreecommitdiff
path: root/scraper/reports/paper_title_report_no_location.html
diff options
context:
space:
mode:
Diffstat (limited to 'scraper/reports/paper_title_report_no_location.html')
-rw-r--r--scraper/reports/paper_title_report_no_location.html2
1 files changed, 1 insertions, 1 deletions
diff --git a/scraper/reports/paper_title_report_no_location.html b/scraper/reports/paper_title_report_no_location.html
index 49c9eec8..8569dbbe 100644
--- a/scraper/reports/paper_title_report_no_location.html
+++ b/scraper/reports/paper_title_report_no_location.html
@@ -1 +1 @@
-<!doctype html><html><head><meta charset='utf-8'><title>Papers with no location</title><link rel='stylesheet' href='reports.css'></head><body><h2>Papers with no location</h2><table border='1' cellpadding='3' cellspacing='3'><th>key</th><th>name</th><th>our title</th><th>found title</th><th></th><th></th><th>address</th><th>s2 id</th><tr><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td>The intrinsic memorability of face images</td><td>The intrinsic memorability of face photographs.</td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the intrinsic memorability of face images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td></tr><tr><td>3d_rma</td><td>3D-RMA</td><td>Automatic 3D Face Authentication</td><td>Automatic 3D face authentication</td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9190&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic 3d face authentication&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td></tr><tr><td>3dddb_unconstrained</td><td>3D Dynamic</td><td>A 3D Dynamic Database for Unconstrained Face Recognition</td><td>A 3D Dynamic Database for Unconstrained Face Recognition</td><td><a href="https://pdfs.semanticscholar.org/4d4b/b462c9f1d4e4ab1e4aa6a75cc0bc71b38461.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d dynamic database for unconstrained face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461</td></tr><tr><td>3dpes</td><td>3DPeS</td><td>3DPes: 3D People Dataset for Surveillance and Forensics</td><td>3DPeS: 3D people dataset for surveillance and forensics</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=3dpes: 3d people dataset for surveillance and forensics&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td></tr><tr><td>4dfab</td><td>4DFAB</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=4dfab: a large scale 4d facial expression database for biometric applications&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a40f9bfd3c45658ee8da70e1f2dfbe1f0c744d43</td></tr><tr><td>50_people_one_question</td><td>50 People One Question</td><td>Merging Pose Estimates Across Space and Time</td><td>Merging Pose Estimates Across Space and Time</td><td><a href="http://authors.library.caltech.edu/41565/1/tracking_bmvc.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=merging pose estimates across space and time&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td></tr><tr><td>adience</td><td>Adience</td><td>Age and Gender Estimation of Unfiltered Faces</td><td>Age and Gender Estimation of Unfiltered Faces</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=age and gender estimation of unfiltered faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td></tr><tr><td>afad</td><td>AFAD</td><td>Ordinal Regression with a Multiple Output CNN for Age Estimation</td><td>Ordinal Regression with Multiple Output CNN for Age Estimation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ordinal regression with a multiple output cnn for age estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td></tr><tr><td>afew_va</td><td>AFEW-VA</td><td>AFEW-VA database for valence and arousal estimation in-the-wild</td><td>AFEW-VA database for valence and arousal estimation in-the-wild</td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/afew-va.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=afew-va database for valence and arousal estimation in-the-wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2624d84503bc2f8e190e061c5480b6aa4d89277a</td></tr><tr><td>affectnet</td><td>AffectNet</td><td>AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</td><td>AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</td><td><a href="https://arxiv.org/pdf/1708.03985.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=affectnet: a database for facial expression, valence, and arousal computing in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td></tr><tr><td>aflw</td><td>AFLW</td><td>Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization</td><td>Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td></tr><tr><td>afw</td><td>AFW</td><td>Face detection, pose estimation and landmark localization in the wild</td><td>Face detection, pose estimation, and landmark localization in the wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face detection, pose estimation and landmark localization in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td></tr><tr><td>agedb</td><td>AgeDB</td><td>AgeDB: the first manually collected, in-the-wild age database</td><td>AgeDB: The First Manually Collected, In-the-Wild Age Database</td><td><a href="http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=agedb: the first manually collected, in-the-wild age database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d818568838433a6d6831adde49a58cef05e0c89f</td></tr><tr><td>alert_airport</td><td>ALERT Airport</td><td>A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets</td><td>A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a systematic evaluation and benchmark for person re-identification: features, metrics, and datasets&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td></tr><tr><td>am_fed</td><td>AM-FED</td><td>Affectiva MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected “In the Wild”</td><td>Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=affectiva mit facial expression dataset (am-fed): naturalistic and spontaneous facial expressions collected “in the wild”&sort=relevance" target="_blank">[s2]</a></td><td></td><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td></tr><tr><td>apis</td><td>APiS1.0</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute classification in surveillance: database and evaluation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td></tr><tr><td>appa_real</td><td>APPA-REAL</td><td>Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database</td><td>Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=apparent and real age estimation in still images with deep residual regressors on appa-real database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>633c851ebf625ad7abdda2324e9de093cf623141</td></tr><tr><td>appa_real</td><td>APPA-REAL</td><td>From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation</td><td>From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7b92d1e53cc87f7a4256695de590098a2f30261e</td></tr><tr><td>ar_facedb</td><td>AR Face</td><td>The AR Face Database</td><td>The AR face database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the ar face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6d96f946aaabc734af7fe3fc4454cf8547fcd5ed</td></tr><tr><td>awe_ears</td><td>AWE Ears</td><td>Ear Recognition: More Than a Survey</td><td>Ear Recognition: More Than a Survey</td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ear recognition: more than a survey&sort=relevance" target="_blank">[s2]</a></td><td></td><td>84fe5b4ac805af63206012d29523a1e033bc827e</td></tr><tr><td>b3d_ac</td><td>B3D(AC)</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3-d audio-visual corpus of affective communication&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td></tr><tr><td>bbc_pose</td><td>BBC Pose</td><td>Automatic and Efficient Human Pose Estimation for Sign Language Videos</td><td>Automatic and Efficient Human Pose Estimation for Sign Language Videos</td><td><a href="http://tomas.pfister.fi/files/charles13ijcv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic and efficient human pose estimation for sign language videos&sort=relevance" target="_blank">[s2]</a></td><td></td><td>213a579af9e4f57f071b884aa872651372b661fd</td></tr><tr><td>bfm</td><td>BFM</td><td>A 3D Face Model for Pose and Illumination Invariant Face Recognition</td><td>A 3D Face Model for Pose and Illumination Invariant Face Recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d face model for pose and illumination invariant face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td></tr><tr><td>bio_id</td><td>BioID Face</td><td>Robust Face Detection Using the Hausdorff Distance</td><td>Robust Face Detection Using the Hausdorff Distance</td><td><a href="https://pdfs.semanticscholar.org/4053/e3423fb70ad9140ca89351df49675197196a.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust face detection using the hausdorff distance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4053e3423fb70ad9140ca89351df49675197196a</td></tr><tr><td>bosphorus</td><td>The Bosphorus</td><td>Bosphorus Database for 3D Face Analysis</td><td>Bosphorus Database for 3D Face Analysis</td><td><a href="https://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=bosphorus database for 3d face analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2acf7e58f0a526b957be2099c10aab693f795973</td></tr><tr><td>bp4d_plus</td><td>BP4D+</td><td>Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</td><td>Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multimodal spontaneous emotion corpus for human behavior analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td></tr><tr><td>bpad</td><td>BPAD</td><td>Describing People: A Poselet-Based Approach to Attribute Classification</td><td>Describing people: A poselet-based approach to attribute classification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing people: a poselet-based approach to attribute classification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td></tr><tr><td>brainwash</td><td>Brainwash</td><td>End-to-End People Detection in Crowded Scenes</td><td>End-to-End People Detection in Crowded Scenes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=end-to-end people detection in crowded scenes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1bd1645a629f1b612960ab9bba276afd4cf7c666</td></tr><tr><td>bu_3dfe</td><td>BU-3DFE</td><td>A 3D Facial Expression Database For Facial Behavior Research</td><td>A 3D facial expression database for facial behavior research</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d facial expression database for facial behavior research&sort=relevance" target="_blank">[s2]</a></td><td></td><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td></tr><tr><td>cacd</td><td></td><td>Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval</td><td>Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval</td><td><a href="https://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=cross-age reference coding for age-invariant face recognition and retrieval&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c44c84540db1c38ace232ef34b03bda1c81ba039</td></tr><tr><td>cafe</td><td>#N/A</td><td>The Child Affective Facial Expression (CAFE) Set: Validity and reliability from untrained adults</td><td>The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</td><td><a href="https://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the child affective facial expression (cafe) set: validity and reliability from untrained adults&sort=relevance" target="_blank">[s2]</a></td><td></td><td>20388099cc415c772926e47bcbbe554e133343d1</td></tr><tr><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td>Pruning Training Sets for Learning of Object Categories</td><td>Pruning training sets for learning of object categories</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pruning training sets for learning of object categories&sort=relevance" target="_blank">[s2]</a></td><td></td><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td></tr><tr><td>caltech_crp</td><td>Caltech CRP</td><td>Fine-grained classification of pedestrians in video: Benchmark and state of the art</td><td>Fine-grained classification of pedestrians in video: Benchmark and state of the art</td><td><a href="https://arxiv.org/pdf/1605.06177.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fine-grained classification of pedestrians in video: benchmark and state of the art&sort=relevance" target="_blank">[s2]</a></td><td></td><td>060820f110a72cbf02c14a6d1085bd6e1d994f6a</td></tr><tr><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td>Pedestrian Detection: A Benchmark</td><td>Pedestrian detection: A benchmark</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian detection: a benchmark&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1dc35905a1deff8bc74688f2d7e2f48fd2273275</td></tr><tr><td>cas_peal</td><td>CAS-PEAL</td><td>The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</td><td>The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cas-peal large-scale chinese face database and baseline evaluations&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td></tr><tr><td>casablanca</td><td>Casablanca</td><td>Context-aware {CNNs} for person head detection</td><td>Context-Aware CNNs for Person Head Detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=context-aware {cnns} for person head detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td></tr><tr><td>casia_webface</td><td>CASIA Webface</td><td>Learning Face Representation from Scratch</td><td>Learning Face Representation from Scratch</td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning face representation from scratch&sort=relevance" target="_blank">[s2]</a></td><td></td><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td></tr><tr><td>celeba</td><td>CelebA</td><td>Deep Learning Face Attributes in the Wild</td><td>Deep Learning Face Attributes in the Wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep learning face attributes in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td></tr><tr><td>cfd</td><td>CFD</td><td>The Chicago face database: A free stimulus set of faces and norming data</td><td>The Chicago face database: A free stimulus set of faces and norming data.</td><td><a href="https://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the chicago face database: a free stimulus set of faces and norming data&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td></tr><tr><td>chalearn</td><td>ChaLearn</td><td>ChaLearn Looking at People: A Review of Events and Resources</td><td>ChaLearn looking at people: A review of events and resources</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=chalearn looking at people: a review of events and resources&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td></tr><tr><td>chokepoint</td><td>ChokePoint</td><td>Patch-based Probabilistic Image Quality Assessment for Face Selection and Improved Video-based Face Recognition</td><td>Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=patch-based probabilistic image quality assessment for face selection and improved video-based face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td></tr><tr><td>clothing_co_parsing</td><td>CCP</td><td>Clothing Co-Parsing by Joint Image Segmentation and Labeling</td><td>Clothing Co-parsing by Joint Image Segmentation and Labeling</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clothing co-parsing by joint image segmentation and labeling&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2bf8541199728262f78d4dced6fb91479b39b738</td></tr><tr><td>cmdp</td><td>CMDP</td><td>Distance Estimation of an Unknown Person from a Portrait</td><td>Distance Estimation of an Unknown Person from a Portrait</td><td><a href="http://authors.library.caltech.edu/49084/13/FaceDistanceEstimation_RONCHI.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=distance estimation of an unknown person from a portrait&sort=relevance" target="_blank">[s2]</a></td><td></td><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td></tr><tr><td>cmu_pie</td><td>CMU PIE</td><td>The CMU Pose, Illumination, and Expression Database</td><td>The CMU Pose, Illumination, and Expression (PIE) Database</td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cmu pose, illumination, and expression database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d423acc78273b75134e2afd1777ba6d3a398973</td></tr><tr><td>coco</td><td>COCO</td><td>Microsoft COCO: Common Objects in Context</td><td>Microsoft COCO: Common Objects in Context</td><td><a href="https://arxiv.org/pdf/1405.0312.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=microsoft coco: common objects in context&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5e0f8c355a37a5a89351c02f174e7a5ddcb98683</td></tr><tr><td>coco_action</td><td>COCO-a</td><td>Describing Common Human Visual Actions in Images</td><td>Describing Common Human Visual Actions in Images</td><td><a href="https://arxiv.org/pdf/1506.02203.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing common human visual actions in images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td></tr><tr><td>coco_qa</td><td>COCO QA</td><td>Exploring Models and Data for Image Question Answering</td><td>Exploring Models and Data for Image Question Answering</td><td><a href="https://arxiv.org/pdf/1505.02074.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=exploring models and data for image question answering&sort=relevance" target="_blank">[s2]</a></td><td></td><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td></tr><tr><td>cofw</td><td>COFW</td><td>Robust face landmark estimation under occlusion</td><td>Robust Face Landmark Estimation under Occlusion</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust face landmark estimation under occlusion&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2724ba85ec4a66de18da33925e537f3902f21249</td></tr><tr><td>cohn_kanade</td><td>CK</td><td>Comprehensive Database for Facial Expression Analysis</td><td>Comprehensive Database for Facial Expression Analysis</td><td><a href="https://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=comprehensive database for facial expression analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td></tr><tr><td>complex_activities</td><td>Ongoing Complex Activities</td><td>Recognition of Ongoing Complex Activities by Sequence Prediction over a Hierarchical Label Space</td><td>Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognition of ongoing complex activities by sequence prediction over a hierarchical label space&sort=relevance" target="_blank">[s2]</a></td><td></td><td>65355cbb581a219bd7461d48b3afd115263ea760</td></tr><tr><td>cuhk_campus_03</td><td>CUHK03 Campus</td><td>Human Reidentification with Transferred Metric Learning</td><td>Human Reidentification with Transferred Metric Learning</td><td><a href="http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=human reidentification with transferred metric learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td></tr><tr><td>cuhk_campus_03</td><td>CUHK03 Campus</td><td>Locally Aligned Feature Transforms across Views</td><td>Locally Aligned Feature Transforms across Views</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=locally aligned feature transforms across views&sort=relevance" target="_blank">[s2]</a></td><td></td><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td></tr><tr><td>cuhk_campus_03</td><td>CUHK03 Campus</td><td>DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</td><td>DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deepreid: deep filter pairing neural network for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td></tr><tr><td>cvc_01_barcelona</td><td>CVC-01</td><td>Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection</td><td>Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=adaptive image sampling and windows classification for on-board pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>57fe081950f21ca03b5b375ae3e84b399c015861</td></tr><tr><td>ufi</td><td>UFI</td><td>Unconstrained Facial Images: Database for Face Recognition under Real-world Conditions</td><td>Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</td><td><a href="http://home.zcu.cz/~pkral/papers/kral_micai15.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=unconstrained facial images: database for face recognition under real-world conditions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4b4106614c1d553365bad75d7866bff0de6056ed</td></tr><tr><td>d3dfacs</td><td>D3DFACS</td><td>A FACS Valid 3D Dynamic Action Unit database with Applications to 3D Dynamic Morphable Facial Modelling</td><td>A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a facs valid 3d dynamic action unit database with applications to 3d dynamic morphable facial modelling&sort=relevance" target="_blank">[s2]</a></td><td></td><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td></tr><tr><td>dartmouth_children</td><td>Dartmouth Children</td><td>The Dartmouth Database of Children's Faces: Acquisition and validation of a new face stimulus set</td><td>The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</td><td><a href="https://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the dartmouth database of children's faces: acquisition and validation of a new face stimulus set&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td></tr><tr><td>data_61</td><td>Data61 Pedestrian</td><td>A Multi-Modal Graphical Model for Scene Analysis</td><td>A Multi-modal Graphical Model for Scene Analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a multi-modal graphical model for scene analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>563c940054e4b456661762c1ab858e6f730c3159</td></tr><tr><td>deep_fashion</td><td>DeepFashion</td><td>DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</td><td>DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deepfashion: powering robust clothes recognition and retrieval with rich annotations&sort=relevance" target="_blank">[s2]</a></td><td></td><td>18010284894ed0edcca74e5bf768ee2e15ef7841</td></tr><tr><td>deep_fashion</td><td>DeepFashion</td><td>Fashion Landmark Detection in the Wild</td><td>Fashion Landmark Detection in the Wild</td><td><a href="https://arxiv.org/pdf/1608.03049.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fashion landmark detection in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td></tr><tr><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td>Nighttime Face Recognition at Long Distance: Cross-distance and Cross-spectral Matching</td><td>Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</td><td><a href="https://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=nighttime face recognition at long distance: cross-distance and cross-spectral matching&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=performance measures and a data set for multi-target, multi-camera tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Improving Person Re-identification by Attribute and Identity Learning</td><td>Improving Person Re-identification by Attribute and Identity Learning</td><td><a href="https://arxiv.org/pdf/1703.07220.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=improving person re-identification by attribute and identity learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7f23a4bb0c777dd72cca7665a5f370ac7980217e</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro</td><td>Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro</td><td><a href="https://arxiv.org/pdf/1701.07717.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=unlabeled samples generated by gan improve the person re-identification baseline in vitro&sort=relevance" target="_blank">[s2]</a></td><td></td><td>15e1af79939dbf90790b03d8aa02477783fb1d0f</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Tracking Multiple People Online and in Real Time</td><td>Tracking Multiple People Online and in Real Time</td><td><a href="https://pdfs.semanticscholar.org/64e0/690dd176a93de9d4328f6e31fc4afe1e7536.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=tracking multiple people online and in real time&sort=relevance" target="_blank">[s2]</a></td><td></td><td>64e0690dd176a93de9d4328f6e31fc4afe1e7536</td></tr><tr><td>emotio_net</td><td>EmotioNet Database</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=emotionet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td></tr><tr><td>erce</td><td>ERCe</td><td>Video Synopsis by Heterogeneous Multi-source Correlation</td><td>Video Synopsis by Heterogeneous Multi-source Correlation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=video synopsis by heterogeneous multi-source correlation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b6c293f0420f7e945b5916ae44269fb53e139275</td></tr><tr><td>erce</td><td>ERCe</td><td>Learning from Multiple Sources for Video Summarisation</td><td>Learning from Multiple Sources for Video Summarisation</td><td><a href="https://arxiv.org/pdf/1501.03069.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning from multiple sources for video summarisation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>287ddcb3db5562235d83aee318f318b8d5e43fb1</td></tr><tr><td>europersons</td><td>EuroCity Persons</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the eurocity persons dataset: a novel benchmark for object detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>72a155c987816ae81c858fddbd6beab656d86220</td></tr><tr><td>expw</td><td>ExpW</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td><a href="https://arxiv.org/pdf/1609.06426.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from facial expression recognition to interpersonal relation prediction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td></tr><tr><td>face_scrub</td><td>FaceScrub</td><td>A data-driven approach to cleaning large face datasets</td><td>A data-driven approach to cleaning large face datasets</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a data-driven approach to cleaning large face datasets&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td></tr><tr><td>face_tracer</td><td>FaceTracer</td><td>FaceTracer: A Search Engine for Large Collections of Images with Faces</td><td>FaceTracer: A Search Engine for Large Collections of Images with Faces</td><td><a href="https://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facetracer: a search engine for large collections of images with faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td></tr><tr><td>face_tracer</td><td>FaceTracer</td><td>Face Swapping: Automatically Replacing Faces in Photographs</td><td>Face swapping: automatically replacing faces in photographs</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face swapping: automatically replacing faces in photographs&sort=relevance" target="_blank">[s2]</a></td><td></td><td>670637d0303a863c1548d5b19f705860a23e285c</td></tr><tr><td>faceplace</td><td>Face Place</td><td>Recognizing disguised faces</td><td>Recognizing disguised faces</td><td><a href="https://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognizing disguised faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td></tr><tr><td>fddb</td><td>FDDB</td><td>FDDB: A Benchmark for Face Detection in Unconstrained Settings</td><td>FDDB: A benchmark for face detection in unconstrained settings</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fddb: a benchmark for face detection in unconstrained settings&sort=relevance" target="_blank">[s2]</a></td><td></td><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td></tr><tr><td>fei</td><td>FEI</td><td>Captura e Alinhamento de Imagens: Um Banco de Faces Brasileiro</td><td>A new ranking method for principal components analysis and its application to face image analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=captura e alinhamento de imagens: um banco de faces brasileiro&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET Verification Testing Protocol for Face Recognition Algorithms</td><td>The FERET Verification Testing Protocol for Face Recognition Algorithms</td><td><a href="https://pdfs.semanticscholar.org/8d2a/1c768fce6f71584dd993fb97e7b6419aaf60.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret verification testing protocol for face recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0c4a139bb87c6743c7905b29a3cfec27a5130652</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td><a href="https://pdfs.semanticscholar.org/5099/7a5605c1f61e09e9a96789ed7495be6625aa.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret evaluation methodology for face-recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td></tr><tr><td>feret</td><td>FERET</td><td>FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</td><td>FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</td><td><a href="https://pdfs.semanticscholar.org/31de/9b3dd6106ce6eec9a35991b2b9083395fd0b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=feret ( face recognition technology ) recognition algorithm development and test results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>31de9b3dd6106ce6eec9a35991b2b9083395fd0b</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET database and evaluation procedure for face-recognition algorithms</td><td>The FERET database and evaluation procedure for face-recognition algorithms</td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret database and evaluation procedure for face-recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>dc8b25e35a3acb812beb499844734081722319b4</td></tr><tr><td>ferplus</td><td>FER+</td><td>Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution</td><td>Training deep networks for facial expression recognition with crowd-sourced label distribution</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=training deep networks for facial expression recognition with crowd-sourced label distribution&sort=relevance" target="_blank">[s2]</a></td><td></td><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td></tr><tr><td>fia</td><td>CMU FiA</td><td>The CMU Face In Action (FIA) Database</td><td>The CMU Face In Action (FIA) Database</td><td><a href="https://pdfs.semanticscholar.org/4766/2d1a368daf70ba70ef2d59eb6209f98b675d.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cmu face in action (fia) database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td></tr><tr><td>fiw_300</td><td>300-W</td><td>A semi-automatic methodology for facial landmark annotation</td><td>A Semi-automatic Methodology for Facial Landmark Annotation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a semi-automatic methodology for facial landmark annotation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td></tr><tr><td>fiw_300</td><td>300-W</td><td>300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge</td><td>300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=300 faces in-the-wild challenge: the first facial landmark localization challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td></tr><tr><td>fiw_300</td><td>300-W</td><td>300 faces In-the-wild challenge: Database and results</td><td>300 Faces In-The-Wild Challenge: database and results</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=300 faces in-the-wild challenge: database and results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e4754afaa15b1b53e70743880484b8d0736990ff</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>FACE2GPS: Estimating geographic location from facial features</td><td>Exploring the geo-dependence of human face appearance</td><td><a href="http://cs.uky.edu/~jacobs/papers/islam2014faces.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face2gps: estimating geographic location from facial features&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2cd7821fcf5fae53a185624f7eeda007434ae037</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>Large-scale geo-facial image analysis</td><td>Large-scale geo-facial image analysis</td><td><a href="https://pdfs.semanticscholar.org/3ede/3ed28329bf48fbd06438a69c4f855bef003f.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large-scale geo-facial image analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4af89578ac237278be310f7660a408b03f12d603</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>Exploring the Geo-Dependence of Human Face Appearance</td><td>Exploring the geo-dependence of human face appearance</td><td><a href="http://cs.uky.edu/~jacobs/papers/islam2014faces.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=exploring the geo-dependence of human face appearance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2cd7821fcf5fae53a185624f7eeda007434ae037</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>GeoFaceExplorer: Exploring the Geo-Dependence of Facial Attributes</td><td>GeoFaceExplorer: exploring the geo-dependence of facial attributes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=geofaceexplorer: exploring the geo-dependence of facial attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>17b46e2dad927836c689d6787ddb3387c6159ece</td></tr><tr><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td>Maximum likelihood training of the embedded HMM for face detection and recognition</td><td>Maximum Likelihood Training of the Embedded HMM for Face Detection and Recognition</td><td><a href="http://www.researchgate.net/profile/Monson_Hayes/publication/221124512_Maximum_Likelihood_Training_of_the_Embedded_HMM_for_Face_Detection_and_Recognition/links/0deec53509be9d6f55000000.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=maximum likelihood training of the embedded hmm for face detection and recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td></tr><tr><td>gfw</td><td>Grouping Face in the Wild</td><td>Merge or Not? Learning to Group Faces via Imitation Learning</td><td>Merge or Not? Learning to Group Faces via Imitation Learning</td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=merge or not? learning to group faces via imitation learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td></tr><tr><td>graz</td><td>Graz Pedestrian</td><td>Weak Hypotheses and Boosting for Generic Object Detection and Recognition</td><td>Weak Hypotheses and Boosting for Generic Object Detection and Recognition</td><td><a href="https://pdfs.semanticscholar.org/0c91/808994a250d7be332400a534a9291ca3b60e.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=weak hypotheses and boosting for generic object detection and recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0c91808994a250d7be332400a534a9291ca3b60e</td></tr><tr><td>h3d</td><td>H3D</td><td>Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations</td><td>Poselets: Body part detectors trained using 3D human pose annotations</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=poselets: body part detectors trained using 3d human pose annotations&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2830fb5282de23d7784b4b4bc37065d27839a412</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>The HDA+ data set for research on fully automated re-identification systems</td><td>The HDA+ Data Set for Research on Fully Automated Re-identification Systems</td><td><a href="https://pdfs.semanticscholar.org/8f02/ec0be21461fbcedf51d864f944cfc42c875f.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the hda+ data set for research on fully automated re-identification systems&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>A Multi-camera video data set for research on High-Definition surveillance</td><td>HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a multi-camera video data set for research on high-definition surveillance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>bd88bb2e4f351352d88ee7375af834360e223498</td></tr><tr><td>helen</td><td>Helen</td><td>Interactive Facial Feature Localization</td><td>Interactive Facial Feature Localization</td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=interactive facial feature localization&sort=relevance" target="_blank">[s2]</a></td><td></td><td>95f12d27c3b4914e0668a268360948bce92f7db3</td></tr><tr><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td>Hi4D-ADSIP 3-D dynamic facial articulation database</td><td>Hi4D-ADSIP 3-D dynamic facial articulation database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hi4d-adsip 3-d dynamic facial articulation database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td></tr><tr><td>hipsterwars</td><td>Hipsterwars</td><td>Hipster Wars: Discovering Elements of Fashion Styles</td><td>Hipster Wars: Discovering Elements of Fashion Styles</td><td><a href="https://pdfs.semanticscholar.org/04c2/cda00e5536f4b1508cbd80041e9552880e67.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hipster wars: discovering elements of fashion styles&sort=relevance" target="_blank">[s2]</a></td><td></td><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td></tr><tr><td>hollywood_headset</td><td>HollywoodHeads</td><td>Context-aware CNNs for person head detection</td><td>Context-Aware CNNs for Person Head Detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=context-aware cnns for person head detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td></tr><tr><td>hrt_transgender</td><td>HRT Transgender</td><td>Is the Eye Region More Reliable Than the Face? A Preliminary Study of Face-based Recognition on a Transgender Dataset</td><td>Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=is the eye region more reliable than the face? a preliminary study of face-based recognition on a transgender dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td></tr><tr><td>ibm_dif</td><td>IBM Diversity in Faces</td><td>Diversity in Faces</td><td>Facial Coding Scheme Reference 1 Craniofacial Distances</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=diversity in faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ab7cff2ccda7269b73ff6efd9d37e1318f7db25</td></tr><tr><td>ifad</td><td>IFAD</td><td>Indian Face Age Database: A Database for Face Recognition with Age Variation</td><td>Indian Face Age Database: A Database for Face Recognition with Age Variation</td><td><a href="https://pdfs.semanticscholar.org/025e/4cf3fd3fdeced91e9373b56ee14af7ca432c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=indian face age database: a database for face recognition with age variation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td></tr><tr><td>ifdb</td><td>IFDB</td><td>Iranian Face Database and Evaluation with a New Detection Algorithm</td><td>Iranian Face Database and Evaluation with a New Detection Algorithm</td><td><a href="https://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iranian face database and evaluation with a new detection algorithm&sort=relevance" target="_blank">[s2]</a></td><td></td><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td></tr><tr><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td>Automated human identification using ear imaging</td><td>Automated Human Identification Using Ear Imaging</td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automated human identification using ear imaging&sort=relevance" target="_blank">[s2]</a></td><td></td><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td></tr><tr><td>ijb_b</td><td>IJB-B</td><td>IARPA Janus Benchmark-B Face Dataset</td><td>IARPA Janus Benchmark-B Face Dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iarpa janus benchmark-b face dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td></tr><tr><td>ijb_a</td><td>IJB-A</td><td>Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A</td><td>Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pushing the frontiers of unconstrained face detection and recognition: iarpa janus benchmark a&sort=relevance" target="_blank">[s2]</a></td><td></td><td>140c95e53c619eac594d70f6369f518adfea12ef</td></tr><tr><td>ijb_c</td><td>IJB-C</td><td>IARPA Janus Benchmark C</td><td>IARPA Janus Benchmark - C: Face Dataset and Protocol</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iarpa janus benchmark c&sort=relevance" target="_blank">[s2]</a></td><td></td><td>57178b36c21fd7f4529ac6748614bb3374714e91</td></tr><tr><td>ilids_mcts</td><td>i-LIDS Multiple-Camera</td><td>Imagery Library for Intelligent Detection Systems: The i-LIDS User Guide</td><td>Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=imagery library for intelligent detection systems: the i-lids user guide&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td></tr><tr><td>ilids_mcts_vid</td><td>iLIDS-VID</td><td>Person Re-Identi cation by Video Ranking</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identi cation by video ranking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>imdb_face</td><td>IMDb Face</td><td>The Devil of Face Recognition is in the Noise</td><td>The Devil of Face Recognition is in the Noise</td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the devil of face recognition is in the noise&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td></tr><tr><td>imdb_wiki</td><td>IMDB</td><td>Deep expectation of real and apparent age from a single image without facial landmarks</td><td>Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks</td><td><a href="http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep expectation of real and apparent age from a single image without facial landmarks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>10195a163ab6348eef37213a46f60a3d87f289c5</td></tr><tr><td>imdb_wiki</td><td>IMDB</td><td>DEX: Deep EXpectation of apparent age from a single image</td><td>DEX: Deep EXpectation of Apparent Age from a Single Image</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=dex: deep expectation of apparent age from a single image&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td></tr><tr><td>immediacy</td><td>Immediacy</td><td>Multi-task Recurrent Neural Network for Immediacy Prediction</td><td>Multi-task Recurrent Neural Network for Immediacy Prediction</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-task recurrent neural network for immediacy prediction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td></tr><tr><td>imsitu</td><td>imSitu</td><td>Situation Recognition: Visual Semantic Role Labeling for Image Understanding</td><td>Situation Recognition: Visual Semantic Role Labeling for Image Understanding</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=situation recognition: visual semantic role labeling for image understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>51eba481dac6b229a7490f650dff7b17ce05df73</td></tr><tr><td>jaffe</td><td>JAFFE</td><td>Coding Facial Expressions with Gabor Wavelets</td><td>Coding Facial Expressions with Gabor Wavelets</td><td><a href="http://physics.lbl.gov/patrecog/images/Facerecog_gabor.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=coding facial expressions with gabor wavelets&sort=relevance" target="_blank">[s2]</a></td><td></td><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td></tr><tr><td>jpl_pose</td><td>JPL-Interaction dataset</td><td>First-Person Activity Recognition: What Are They Doing to Me?</td><td>First-Person Activity Recognition: What Are They Doing to Me?</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=first-person activity recognition: what are they doing to me?&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Understanding Kin Relationships in a Photo</td><td>Understanding Kin Relationships in a Photo</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=understanding kin relationships in a photo&sort=relevance" target="_blank">[s2]</a></td><td></td><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Kinship Verification through Transfer Learning</td><td>Kinship Verification through Transfer Learning</td><td><a href="https://pdfs.semanticscholar.org/4793/f11fbca4a7dba898b9fff68f70d868e2497c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=kinship verification through transfer learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td></tr><tr><td>kitti</td><td>KITTI</td><td>Vision meets Robotics: The KITTI Dataset</td><td>Vision meets robotics: The KITTI dataset</td><td><a href="https://pdfs.semanticscholar.org/026e/3363b7f76b51cc711886597a44d5f1fd1de2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vision meets robotics: the kitti dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>026e3363b7f76b51cc711886597a44d5f1fd1de2</td></tr><tr><td>lag</td><td>LAG</td><td>Large Age-Gap Face Verification by Feature Injection in Deep Networks</td><td>Large age-gap face verification by feature injection in deep networks</td><td><a href="https://arxiv.org/pdf/1602.06149.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large age-gap face verification by feature injection in deep networks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td></tr><tr><td>laofiw</td><td>LAOFIW</td><td>Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings</td><td>Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings</td><td><a href="https://arxiv.org/pdf/1809.02169.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=turning a blind eye: explicit removal of biases and variation from deep neural network embeddings&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4eab317b5ac436a949849ed286baa3de2a541eef</td></tr><tr><td>large_scale_person_search</td><td>Large Scale Person Search</td><td>End-to-End Deep Learning for Person Search</td><td>End-to-End Deep Learning for Person Search</td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=end-to-end deep learning for person search&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td></tr><tr><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td><a href="http://www.bmva.org/bmvc/2010/conference/paper12/abstract12.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td></tr><tr><td>lfpw</td><td>LFWP</td><td>Localizing Parts of Faces Using a Consensus of Exemplars</td><td>Localizing Parts of Faces Using a Consensus of Exemplars</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=localizing parts of faces using a consensus of exemplars&sort=relevance" target="_blank">[s2]</a></td><td></td><td>140438a77a771a8fb656b39a78ff488066eb6b50</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: Updates and New Reporting Procedures</td><td>Labeled Faces in the Wild : Updates and New Reporting Procedures</td><td><a href="https://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: updates and new reporting procedures&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments</td><td>Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments</td><td><a href="https://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: a database for studying face recognition in unconstrained environments&sort=relevance" target="_blank">[s2]</a></td><td></td><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: A Survey</td><td>Labeled Faces in the Wild: A Survey</td><td><a href="https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: a survey&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td></tr><tr><td>lfw</td><td>LFW</td><td>Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</td><td>Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=effective unconstrained face recognition by combining multiple descriptors and learned background statistics&sort=relevance" target="_blank">[s2]</a></td><td></td><td>133f01aec1534604d184d56de866a4bd531dac87</td></tr><tr><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td>XM2VTSDB: The Extended M2VTS Database</td><td>XM2VTSDB : The extended M2VTS database</td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=xm2vtsdb: the extended m2vts database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td></tr><tr><td>mafa</td><td>MAsked FAces</td><td>Detecting Masked Faces in the Wild with LLE-CNNs</td><td>Detecting Masked Faces in the Wild with LLE-CNNs</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=detecting masked faces in the wild with lle-cnns&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9cc8cf0c7d7fa7607659921b6ff657e17e135ecc</td></tr><tr><td>mafl</td><td>MAFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td><a href="https://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td></tr><tr><td>mafl</td><td>MAFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>malf</td><td>MALF</td><td>Fine-grained Evaluation on Face Detection in the Wild.</td><td>Fine-grained evaluation on face detection in the wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fine-grained evaluation on face detection in the wild.&sort=relevance" target="_blank">[s2]</a></td><td></td><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td></tr><tr><td>mapillary</td><td>Mapillary</td><td>The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</td><td>The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mapillary vistas dataset for semantic understanding of street scenes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td></tr><tr><td>market_1501</td><td>Market 1501</td><td>Improving Person Re-identification by Attribute and Identity Learning</td><td>Improving Person Re-identification by Attribute and Identity Learning</td><td><a href="https://arxiv.org/pdf/1703.07220.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=improving person re-identification by attribute and identity learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7f23a4bb0c777dd72cca7665a5f370ac7980217e</td></tr><tr><td>market_1501</td><td>Market 1501</td><td>Scalable Person Re-identification: A Benchmark</td><td>Scalable Person Re-identification: A Benchmark</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scalable person re-identification: a benchmark&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td></tr><tr><td>market_1501</td><td>Market 1501</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>mars</td><td>MARS</td><td>MARS: A Video Benchmark for Large-Scale Person Re-identification</td><td>MARS: A Video Benchmark for Large-Scale Person Re-Identification</td><td><a href="https://pdfs.semanticscholar.org/c038/7e788a52f10bf35d4d50659cfa515d89fbec.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=mars: a video benchmark for large-scale person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td></tr><tr><td>mcgill</td><td>McGill Real World</td><td>Hierarchical Temporal Graphical Model for Head Pose Estimation and Subsequent Attribute Classification in Real-World Videos</td><td>Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2d45cfd838016a6e39f6b766ffe85acd649440c7</td></tr><tr><td>megaage</td><td>MegaAge</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=quantifying facial age by posterior of age comparisons&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c72a2ea819df9b0e8cd267eebcc6528b8741e03d</td></tr><tr><td>megaface</td><td>MegaFace</td><td>Level Playing Field for Million Scale Face Recognition</td><td>Level Playing Field for Million Scale Face Recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=level playing field for million scale face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td></tr><tr><td>megaface</td><td>MegaFace</td><td>The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</td><td>The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the megaface benchmark: 1 million faces for recognition at scale&sort=relevance" target="_blank">[s2]</a></td><td></td><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td></tr><tr><td>mit_cbcl</td><td>MIT CBCL</td><td>Component-based Face Recognition with 3D Morphable Models</td><td>Component-Based Face Recognition with 3D Morphable Models</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=component-based face recognition with 3d morphable models&sort=relevance" target="_blank">[s2]</a></td><td></td><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td></tr><tr><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td>WEB-BASED DATABASE FOR FACIAL EXPRESSION ANALYSIS</td><td>Web-based database for facial expression analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=web-based database for facial expression analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td></tr><tr><td>moments_in_time</td><td>Moments in Time</td><td>Moments in Time Dataset: one million videos for event understanding</td><td>Moments in Time Dataset: one million videos for event understanding</td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=moments in time dataset: one million videos for event understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>41976ebc8ab76d9a6861487c97cc7fcbe3b6015f</td></tr><tr><td>morph</td><td>MORPH Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>morph_nc</td><td>MORPH Non-Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>mot</td><td>MOT</td><td>Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</td><td>Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</td><td><a href="https://cvhci.anthropomatik.kit.edu/images/stories/msmmi/papers/eurasip2008.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=evaluating multiple object tracking performance: the clear mot metrics&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2258e01865367018ed6f4262c880df85b94959f8</td></tr><tr><td>mot</td><td>MOT</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=performance measures and a data set for multi-target, multi-camera tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td></tr><tr><td>mpi_large</td><td>Large MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>mpi_small</td><td>Small MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>mpii_gaze</td><td>MPIIGaze</td><td>Appearance-based Gaze Estimation in the Wild</td><td>Appearance-based gaze estimation in the wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=appearance-based gaze estimation in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td></tr><tr><td>mpii_human_pose</td><td>MPII Human Pose</td><td>2D Human Pose Estimation: New Benchmark and State of the Art Analysis</td><td>2D Human Pose Estimation: New Benchmark and State of the Art Analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=2d human pose estimation: new benchmark and state of the art analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td></tr><tr><td>mr2</td><td>MR2</td><td>The MR2: A multi-racial mega-resolution database of facial stimuli</td><td>The MR2: A multi-racial, mega-resolution database of facial stimuli.</td><td><a href="http://www.mpmlab.org/The%20MR2%20face%20database.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mr2: a multi-racial mega-resolution database of facial stimuli&sort=relevance" target="_blank">[s2]</a></td><td></td><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td></tr><tr><td>mrp_drone</td><td>MRP Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=investigating open-world person re-identification using a drone&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td></tr><tr><td>msceleb</td><td>MsCeleb</td><td>MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</td><td>MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</td><td><a href="https://arxiv.org/pdf/1607.08221.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ms-celeb-1m: a dataset and benchmark for large-scale face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>291265db88023e92bb8c8e6390438e5da148e8f5</td></tr><tr><td>msmt_17</td><td>MSMT17</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-identification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person transfer gan to bridge domain gap for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0cc5f73a37723a6dd465924143f1cb4976d0169</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td><a href="https://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>multi_pie</td><td>MULTIPIE</td><td>Multi-PIE</td><td>The CMU Pose, Illumination, and Expression (PIE) Database</td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-pie&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d423acc78273b75134e2afd1777ba6d3a398973</td></tr><tr><td>names_and_faces</td><td>News Dataset</td><td>Names and Faces</td><td>Names and faces in the news</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=names and faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2fda164863a06a92d3a910b96eef927269aeb730</td></tr><tr><td>nova_emotions</td><td>Novaemötions Dataset</td><td>Crowdsourcing facial expressions for affective-interaction</td><td>Crowdsourcing facial expressions for affective-interaction</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=crowdsourcing facial expressions for affective-interaction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td></tr><tr><td>orl</td><td>ORL</td><td>Parameterisation of a Stochastic Model for Human Face Identification</td><td>Parameterisation of a stochastic model for human face identification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=parameterisation of a stochastic model for human face identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>55206f0b5f57ce17358999145506cd01e570358c</td></tr><tr><td>pa_100k</td><td>PA-100K</td><td>HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis</td><td>HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hydraplus-net: attentive deep features for pedestrian analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>f41c7bb02fc97d5fb9cadd7a49c3e558a1c58a44</td></tr><tr><td>penn_fudan</td><td>Penn Fudan</td><td>Object Detection Combining Recognition and Segmentation</td><td>Object Detection Combining Recognition and Segmentation</td><td><a href="https://pdfs.semanticscholar.org/3394/168ff0719b03ff65bcea35336a76b21fe5e4.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=object detection combining recognition and segmentation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td></tr><tr><td>peta</td><td>PETA</td><td>Pedestrian Attribute Recognition At Far Distance</td><td>Pedestrian Attribute Recognition At Far Distance</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute recognition at far distance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td></tr><tr><td>pets</td><td>PETS 2017</td><td>PETS 2017: Dataset and Challenge</td><td>PETS 2017: Dataset and Challenge</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pets 2017: dataset and challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td></tr><tr><td>pilot_parliament</td><td>PPB</td><td>Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</td><td>Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</td><td><a href="http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a-supp.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=gender shades: intersectional accuracy disparities in commercial gender classification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>18858cc936947fc96b5c06bbe3c6c2faa5614540</td></tr><tr><td>pipa</td><td>PIPA</td><td>Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues</td><td>Beyond frontal faces: Improving Person Recognition using multiple cues</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=beyond frontal faces: improving person recognition using multiple cues&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0a85bdff552615643dd74646ac881862a7c7072d</td></tr><tr><td>pku_reid</td><td>PKU-Reid</td><td>Swiss-System Based Cascade Ranking for Gait-based Person Re-identification</td><td>Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=swiss-system based cascade ranking for gait-based person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td></tr><tr><td>pku_reid</td><td>PKU-Reid</td><td>Orientation driven bag of appearances for person re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>precarious</td><td>Precarious</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians With Adversarial Imposters</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=expecting the unexpected: training detectors for unusual pedestrians with adversarial imposters&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td></tr><tr><td>prid</td><td>PRID</td><td>Person Re-Identification by Descriptive and Discriminative Classification</td><td>Person Re-identification by Descriptive and Discriminative Classification</td><td><a href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identification by descriptive and discriminative classification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td></tr><tr><td>prw</td><td>PRW</td><td>Person Re-identification in the Wild</td><td>Person Re-identification in the Wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identification in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0b84f07af44f964817675ad961def8a51406dd2e</td></tr><tr><td>psu</td><td>PSU</td><td>Vision-based Analysis of Small Groups in Pedestrian Crowds</td><td>Vision-Based Analysis of Small Groups in Pedestrian Crowds</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vision-based analysis of small groups in pedestrian crowds&sort=relevance" target="_blank">[s2]</a></td><td></td><td>066000d44d6691d27202896691f08b27117918b9</td></tr><tr><td>pubfig</td><td>PubFig</td><td>Attribute and Simile Classifiers for Face Verification</td><td>Attribute and simile classifiers for face verification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=attribute and simile classifiers for face verification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td></tr><tr><td>put_face</td><td>Put Face</td><td>The PUT face database</td><td>The put face database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the put face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td></tr><tr><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td>Surveillance Face Recognition Challenge</td><td>Surveillance Face Recognition Challenge</td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=surveillance face recognition challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2306b2a8fba28539306052764a77a0d0f5d1236a</td></tr><tr><td>rafd</td><td>RaFD</td><td>Presentation and validation of the Radboud Faces Database</td><td>Presentation and validation of the Radboud Faces Database</td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=presentation and validation of the radboud faces database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td></tr><tr><td>raid</td><td>RAiD</td><td>Consistent Re-identification in a Camera Network</td><td>Consistent Re-identification in a Camera Network</td><td><a href="https://pdfs.semanticscholar.org/c27f/099e6e7e3f7f9979cbe9e0a5175fc5848ea0.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=consistent re-identification in a camera network&sort=relevance" target="_blank">[s2]</a></td><td></td><td>09d78009687bec46e70efcf39d4612822e61cb8c</td></tr><tr><td>rap_pedestrian</td><td>RAP</td><td>A Richly Annotated Dataset for Pedestrian Attribute Recognition</td><td>A Richly Annotated Dataset for Pedestrian Attribute Recognition</td><td><a href="https://arxiv.org/pdf/1603.07054.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a richly annotated dataset for pedestrian attribute recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>221c18238b829c12b911706947ab38fd017acef7</td></tr><tr><td>reseed</td><td>ReSEED</td><td>ReSEED: Social Event dEtection Dataset</td><td>ReSEED: social event dEtection dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=reseed: social event detection dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>54983972aafc8e149259d913524581357b0f91c3</td></tr><tr><td>saivt</td><td>SAIVT SoftBio</td><td>A Database for Person Re-Identification in Multi-Camera Surveillance Networks</td><td>A Database for Person Re-Identification in Multi-Camera Surveillance Networks</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a database for person re-identification in multi-camera surveillance networks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td></tr><tr><td>sarc3d</td><td>Sarc3D</td><td>SARC3D: a new 3D body model for People Tracking and Re-identification</td><td>SARC3D: A New 3D Body Model for People Tracking and Re-identification</td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sarc3d: a new 3d body model for people tracking and re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td></tr><tr><td>scface</td><td>SCface</td><td>SCface – surveillance cameras face database</td><td>SCface – surveillance cameras face database</td><td><a href="http://scface.org/SCface%20-%20Surveillance%20Cameras%20Face%20Database.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scface – surveillance cameras face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d</td></tr><tr><td>scut_fbp</td><td>SCUT-FBP</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scut-fbp: a benchmark dataset for facial beauty perception&sort=relevance" target="_blank">[s2]</a></td><td></td><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td></tr><tr><td>scut_head</td><td>SCUT HEAD</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=detecting heads using feature refine net and cascaded multi-scale architecture&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</td><td>A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a spatio-temporal appearance representation for video-based pedestrian re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3b4ec8af470948a72a6ed37a9fd226719a874ebc</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>Local descriptors encoded by Fisher vectors for person re-identification</td><td>Local Descriptors Encoded by Fisher Vectors for Person Re-identification</td><td><a href="https://pdfs.semanticscholar.org/a105/f1ef67b4b02da38eadce8ffb4e13aa301a93.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=local descriptors encoded by fisher vectors for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>46a01565e6afe7c074affb752e7069ee3bf2e4ef</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>Person reidentification by video ranking</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person reidentification by video ranking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>social_relation</td><td>Social Relation</td><td>Learning Social Relation Traits from Face Images</td><td>Learning Social Relation Traits from Face Images</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning social relation traits from face images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2a171f8d14b6b8735001a11c217af9587d095848</td></tr><tr><td>soton</td><td>SOTON HiD</td><td>On a Large Sequence-Based Human Gait Database</td><td>On a Large Sequence-Based Human Gait Database</td><td><a href="https://pdfs.semanticscholar.org/4f93/cd09785c6e77bf4bc5a788e079df524c8d21.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=on a large sequence-based human gait database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td></tr><tr><td>sports_videos_in_the_wild</td><td>SVW</td><td>Sports Videos in the Wild (SVW): A Video Dataset for Sports Analysis</td><td>Sports Videos in the Wild (SVW): A video dataset for sports analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sports videos in the wild (svw): a video dataset for sports analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td></tr><tr><td>stair_actions</td><td>STAIR Action</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stair actions: a video dataset of everyday home actions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td></tr><tr><td>stanford_drone</td><td>Stanford Drone</td><td>Learning Social Etiquette: Human Trajectory Prediction In Crowded Scenes</td><td>Social LSTM: Human Trajectory Prediction in Crowded Spaces</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning social etiquette: human trajectory prediction in crowded scenes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>570f37ed63142312e6ccdf00ecc376341ec72b9f</td></tr><tr><td>stickmen_buffy</td><td>Buffy Stickmen</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td><a href="http://www.bmva.org/bmvc/2010/conference/paper12/abstract12.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td></tr><tr><td>stickmen_buffy</td><td>Buffy Stickmen</td><td>Learning to Parse Images of Articulated Objects</td><td>Learning to parse images of articulated bodies</td><td><a href="http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_899.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to parse images of articulated objects&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>stickmen_family</td><td>We Are Family Stickmen</td><td>We Are Family: Joint Pose Estimation of Multiple Persons</td><td>We Are Family: Joint Pose Estimation of Multiple Persons</td><td><a href="http://eprints.pascal-network.org/archive/00007964/01/eichner10eccv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=we are family: joint pose estimation of multiple persons&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td></tr><tr><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Learning to parse images of articulated bodies</td><td><a href="http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_899.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td>Learning to Parse Images of Articulated Objects</td><td>Learning to parse images of articulated bodies</td><td><a href="http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_899.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to parse images of articulated objects&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>sun_attributes</td><td>SUN</td><td>The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</td><td>The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</td><td><a href="http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the sun attribute database: beyond categories for deeper scene understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>66e6f08873325d37e0ec20a4769ce881e04e964e</td></tr><tr><td>svs</td><td>SVS</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute classification in surveillance: database and evaluation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td></tr><tr><td>texas_3dfrd</td><td>Texas 3DFRD</td><td>Anthropometric 3D Face Recognition</td><td>Anthropometric 3D Face Recognition</td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=anthropometric 3d face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td></tr><tr><td>texas_3dfrd</td><td>Texas 3DFRD</td><td>Texas 3D Face Recognition Database</td><td>Texas 3D Face Recognition Database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=texas 3d face recognition database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d58f886f5150b2d5e48fd1b5a49e09799bf895d</td></tr><tr><td>tiny_faces</td><td>TinyFace</td><td>Low-Resolution Face Recognition</td><td>Low-Resolution Face Recognition</td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=low-resolution face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8990cdce3f917dad622e43e033db686b354d057c</td></tr><tr><td>tiny_images</td><td>Tiny Images</td><td>80 million tiny images: a large dataset for non-parametric object and scene recognition</td><td>80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=80 million tiny images: a large dataset for non-parametric object and scene recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td></tr><tr><td>tisi</td><td>Times Square Intersection</td><td>Video Synopsis by Heterogeneous Multi-source Correlation</td><td>Video Synopsis by Heterogeneous Multi-source Correlation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=video synopsis by heterogeneous multi-source correlation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b6c293f0420f7e945b5916ae44269fb53e139275</td></tr><tr><td>tisi</td><td>Times Square Intersection</td><td>Learning from Multiple Sources for Video Summarisation</td><td>Learning from Multiple Sources for Video Summarisation</td><td><a href="https://arxiv.org/pdf/1501.03069.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning from multiple sources for video summarisation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>287ddcb3db5562235d83aee318f318b8d5e43fb1</td></tr><tr><td>oxford_town_centre</td><td>TownCentre</td><td>Stable Multi-Target Tracking in Real-Time Surveillance Video</td><td>Stable multi-target tracking in real-time surveillance video</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stable multi-target tracking in real-time surveillance video&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td></tr><tr><td>tud_brussels</td><td>TUD-Brussels</td><td>Multi-Cue Onboard Pedestrian Detection</td><td>Multi-cue onboard pedestrian detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-cue onboard pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td></tr><tr><td>tud_campus</td><td>TUD-Campus</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tud_crossing</td><td>TUD-Crossing</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tud_motionpairs</td><td>TUD-Motionparis</td><td>Multi-Cue Onboard Pedestrian Detection</td><td>Multi-cue onboard pedestrian detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-cue onboard pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td></tr><tr><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tvhi</td><td>TVHI</td><td>High Five: Recognising human interactions in TV shows</td><td>High Five: Recognising human interactions in TV shows</td><td><a href="https://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=high five: recognising human interactions in tv shows&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td></tr><tr><td>uccs</td><td>UCCS</td><td>Large scale unconstrained open set face database</td><td>Large scale unconstrained open set face database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large scale unconstrained open set face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td></tr><tr><td>uccs</td><td>UCCS</td><td>Unconstrained Face Detection and Open-Set Face Recognition Challenge</td><td>Unconstrained Face Detection and Open-Set Face Recognition Challenge</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=unconstrained face detection and open-set face recognition challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d4f1eb008eb80595bcfdac368e23ae9754e1e745</td></tr><tr><td>ucf_101</td><td>UCF101</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ucf101: a dataset of 101 human actions classes from videos in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td></tr><tr><td>ucf_crowd</td><td>UCF-CC-50</td><td>Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images</td><td>Multi-source Multi-scale Counting in Extremely Dense Crowd Images</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-source multi-scale counting in extremely dense crowd images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td></tr><tr><td>ucf_selfie</td><td>UCF Selfie</td><td>How to Take a Good Selfie?</td><td>How to Take a Good Selfie?</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=how to take a good selfie?&sort=relevance" target="_blank">[s2]</a></td><td></td><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td></tr><tr><td>ufdd</td><td>UFDD</td><td>Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</td><td>Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</td><td><a href="https://arxiv.org/pdf/1804.10275.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pushing the limits of unconstrained face detection: a challenge dataset and baseline results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3531332efe19be21e7401ba1f04570a142617236</td></tr><tr><td>umb</td><td>UMB</td><td>UMB-DB: A Database of Partially Occluded 3D Faces</td><td>UMB-DB: A database of partially occluded 3D faces</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=umb-db: a database of partially occluded 3d faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td></tr><tr><td>umd_faces</td><td>UMD</td><td>UMDFaces: An Annotated Face Dataset for Training Deep Networks</td><td>UMDFaces: An annotated face dataset for training deep networks</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=umdfaces: an annotated face dataset for training deep networks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>31b05f65405534a696a847dd19c621b7b8588263</td></tr><tr><td>umd_faces</td><td>UMD</td><td>The Do's and Don'ts for CNN-based Face Verification</td><td>The Do’s and Don’ts for CNN-Based Face Verification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the do's and don'ts for cnn-based face verification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6</td></tr><tr><td>urban_tribes</td><td>Urban Tribes</td><td>From Bikers to Surfers: Visual Recognition of Urban Tribes</td><td>From Bikers to Surfers: Visual Recognition of Urban Tribes</td><td><a href="http://vision.cornell.edu/se3/wp-content/uploads/2014/09/utribes_bmvc13_final.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from bikers to surfers: visual recognition of urban tribes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>774cbb45968607a027ae4729077734db000a1ec5</td></tr><tr><td>vgg_celebs_in_places</td><td>CIP</td><td>Faces in Places: Compound Query Retrieval</td><td>Faces in Places: compound query retrieval</td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=faces in places: compound query retrieval&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7ebb153704706e457ab57b432793d2b6e5d12592</td></tr><tr><td>vgg_faces</td><td>VGG Face</td><td>Deep Face Recognition</td><td>Deep Face Recognition</td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td></tr><tr><td>vgg_faces2</td><td>VGG Face2</td><td>VGGFace2: A dataset for recognising faces across pose and age</td><td>VGGFace2: A Dataset for Recognising Faces across Pose and Age</td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vggface2: a dataset for recognising faces across pose and age&sort=relevance" target="_blank">[s2]</a></td><td></td><td>70c59dc3470ae867016f6ab0e008ac8ba03774a1</td></tr><tr><td>viper</td><td>VIPeR</td><td>Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</td><td>Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</td><td><a href="https://pdfs.semanticscholar.org/7847/b1fbccadb780b655e72c66d3f9e93ddb880c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=evaluating appearance models for recognition, reacquisition, and tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td></tr><tr><td>voc</td><td>VOC</td><td>The PASCAL Visual Object Classes (VOC) Challenge</td><td>The Pascal Visual Object Classes (VOC) Challenge</td><td><a href="http://eprints.pascal-network.org/archive/00006187/01/PascalVOC_IJCV2009.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the pascal visual object classes (voc) challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a</td></tr><tr><td>vqa</td><td>VQA</td><td>VQA: Visual Question Answering</td><td>VQA: Visual Question Answering</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vqa: visual question answering&sort=relevance" target="_blank">[s2]</a></td><td></td><td>01959ef569f74c286956024866c1d107099199f7</td></tr><tr><td>wider</td><td>WIDER</td><td>Recognize Complex Events from Static Images by Fusing Deep Channels</td><td>Recognize complex events from static images by fusing deep channels</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognize complex events from static images by fusing deep channels&sort=relevance" target="_blank">[s2]</a></td><td></td><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td></tr><tr><td>wider_attribute</td><td>WIDER Attribute</td><td>Human Attribute Recognition by Deep Hierarchical Contexts</td><td>Human Attribute Recognition by Deep Hierarchical Contexts</td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=human attribute recognition by deep hierarchical contexts&sort=relevance" target="_blank">[s2]</a></td><td></td><td>44d23df380af207f5ac5b41459c722c87283e1eb</td></tr><tr><td>wider_face</td><td>WIDER FACE</td><td>WIDER FACE: A Face Detection Benchmark</td><td>WIDER FACE: A Face Detection Benchmark</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wider face: a face detection benchmark&sort=relevance" target="_blank">[s2]</a></td><td></td><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td></tr><tr><td>wildtrack</td><td>WildTrack</td><td>WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</td><td>WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</td><td><a href="http://openaccess.thecvf.com/content_cvpr_2018/Supplemental/1562-supp.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wildtrack: a multi-camera hd dataset for dense unscripted pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>36bccfb2ad847096bc76777e544f305813cd8f5b</td></tr><tr><td>wlfdb</td><td>WLFDB</td><td>WLFDB: Weakly Labeled Face Databases</td><td>WLFDB : Weakly Labeled Face Databases</td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wlfdb: weakly labeled face databases&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td></tr><tr><td>yale_faces</td><td>YaleFaces</td><td>From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</td><td>From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.147.1487&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from few to many: illumination cone models for face recognition under variable lighting and pose&sort=relevance" target="_blank">[s2]</a></td><td></td><td>18c72175ddbb7d5956d180b65a96005c100f6014</td></tr><tr><td>yale_faces</td><td>YaleFaces</td><td>Acquiring Linear Subspaces for Face Recognition under Variable Lighting</td><td>Acquiring linear subspaces for face recognition under variable lighting</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=acquiring linear subspaces for face recognition under variable lighting&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td></tr><tr><td>yawdd</td><td>YawDD</td><td>YawDD: A Yawning Detection Dataset</td><td>YawDD: a yawning detection dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=yawdd: a yawning detection dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a94cae786d515d3450d48267e12ca954aab791c4</td></tr><tr><td>yfcc_100m</td><td>YFCC100M</td><td>YFCC100M: The New Data in Multimedia Research</td><td>YFCC100M: the new data in multimedia research</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=yfcc100m: the new data in multimedia research&sort=relevance" target="_blank">[s2]</a></td><td></td><td>010f0f4929e6a6644fb01f0e43820f91d0fad292</td></tr><tr><td>york_3d</td><td>UOY 3D Face Database</td><td>Three-Dimensional Face Recognition: An Eigensurface Approach</td><td>Three-dimensional face recognition: an eigensurface approach</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=three-dimensional face recognition: an eigensurface approach&sort=relevance" target="_blank">[s2]</a></td><td></td><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td></tr><tr><td>youtube_faces</td><td>YouTubeFaces</td><td>Face Recognition in Unconstrained Videos with Matched Background Similarity</td><td>Face recognition in unconstrained videos with matched background similarity</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face recognition in unconstrained videos with matched background similarity&sort=relevance" target="_blank">[s2]</a></td><td></td><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td></tr><tr><td>youtube_poses</td><td>YouTube Pose</td><td>Personalizing Human Video Pose Estimation</td><td>Personalizing Human Video Pose Estimation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=personalizing human video pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td></tr></table></body></html> \ No newline at end of file
+<!doctype html><html><head><meta charset='utf-8'><title>Papers with no location</title><link rel='stylesheet' href='reports.css'></head><body><h2>Papers with no location</h2><table border='1' cellpadding='3' cellspacing='3'><th>key</th><th>name</th><th>our title</th><th>found title</th><th></th><th></th><th>address</th><th>s2 id</th><tr><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td>The intrinsic memorability of face images</td><td>The intrinsic memorability of face photographs.</td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the intrinsic memorability of face images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td></tr><tr><td>3d_rma</td><td>3D-RMA</td><td>Automatic 3D Face Authentication</td><td>Automatic 3D face authentication</td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9190&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic 3d face authentication&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td></tr><tr><td>3dddb_unconstrained</td><td>3D Dynamic</td><td>A 3D Dynamic Database for Unconstrained Face Recognition</td><td>A 3D Dynamic Database for Unconstrained Face Recognition</td><td><a href="https://pdfs.semanticscholar.org/4d4b/b462c9f1d4e4ab1e4aa6a75cc0bc71b38461.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d dynamic database for unconstrained face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b38461</td></tr><tr><td>3dpes</td><td>3DPeS</td><td>3DPes: 3D People Dataset for Surveillance and Forensics</td><td>3DPeS: 3D people dataset for surveillance and forensics</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=3dpes: 3d people dataset for surveillance and forensics&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td></tr><tr><td>4dfab</td><td>4DFAB</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td><a href="https://arxiv.org/pdf/1712.01443.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=4dfab: a large scale 4d facial expression database for biometric applications&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a40f9bfd3c45658ee8da70e1f2dfbe1f0c744d43</td></tr><tr><td>fpoq</td><td>50 People One Question</td><td>Merging Pose Estimates Across Space and Time</td><td>Merging Pose Estimates Across Space and Time</td><td><a href="http://authors.library.caltech.edu/41565/1/tracking_bmvc.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=merging pose estimates across space and time&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td></tr><tr><td>adience</td><td>Adience</td><td>Age and Gender Estimation of Unfiltered Faces</td><td>Age and Gender Estimation of Unfiltered Faces</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=age and gender estimation of unfiltered faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td></tr><tr><td>afad</td><td>AFAD</td><td>Ordinal Regression with a Multiple Output CNN for Age Estimation</td><td>Ordinal Regression with Multiple Output CNN for Age Estimation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ordinal regression with a multiple output cnn for age estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td></tr><tr><td>afew_va</td><td>AFEW-VA</td><td>AFEW-VA database for valence and arousal estimation in-the-wild</td><td>AFEW-VA database for valence and arousal estimation in-the-wild</td><td><a href="https://ibug.doc.ic.ac.uk/media/uploads/documents/afew-va.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=afew-va database for valence and arousal estimation in-the-wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2624d84503bc2f8e190e061c5480b6aa4d89277a</td></tr><tr><td>affectnet</td><td>AffectNet</td><td>AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</td><td>AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild</td><td><a href="https://arxiv.org/pdf/1708.03985.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=affectnet: a database for facial expression, valence, and arousal computing in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td></tr><tr><td>aflw</td><td>AFLW</td><td>Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization</td><td>Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td></tr><tr><td>afw</td><td>AFW</td><td>Face detection, pose estimation and landmark localization in the wild</td><td>Face detection, pose estimation, and landmark localization in the wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face detection, pose estimation and landmark localization in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td></tr><tr><td>agedb</td><td>AgeDB</td><td>AgeDB: the first manually collected, in-the-wild age database</td><td>AgeDB: The First Manually Collected, In-the-Wild Age Database</td><td><a href="http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=agedb: the first manually collected, in-the-wild age database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d818568838433a6d6831adde49a58cef05e0c89f</td></tr><tr><td>alert_airport</td><td>ALERT Airport</td><td>A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets</td><td>A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a systematic evaluation and benchmark for person re-identification: features, metrics, and datasets&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td></tr><tr><td>am_fed</td><td>AM-FED</td><td>Affectiva MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected “In the Wild”</td><td>Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=affectiva mit facial expression dataset (am-fed): naturalistic and spontaneous facial expressions collected “in the wild”&sort=relevance" target="_blank">[s2]</a></td><td></td><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td></tr><tr><td>apis</td><td>APiS1.0</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute classification in surveillance: database and evaluation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td></tr><tr><td>appa_real</td><td>APPA-REAL</td><td>Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database</td><td>Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=apparent and real age estimation in still images with deep residual regressors on appa-real database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>633c851ebf625ad7abdda2324e9de093cf623141</td></tr><tr><td>appa_real</td><td>APPA-REAL</td><td>From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation</td><td>From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7b92d1e53cc87f7a4256695de590098a2f30261e</td></tr><tr><td>ar_facedb</td><td>AR Face</td><td>The AR Face Database</td><td>The AR face database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the ar face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6d96f946aaabc734af7fe3fc4454cf8547fcd5ed</td></tr><tr><td>awe_ears</td><td>AWE Ears</td><td>Ear Recognition: More Than a Survey</td><td>Ear Recognition: More Than a Survey</td><td><a href="https://arxiv.org/pdf/1611.06203.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ear recognition: more than a survey&sort=relevance" target="_blank">[s2]</a></td><td></td><td>84fe5b4ac805af63206012d29523a1e033bc827e</td></tr><tr><td>b3d_ac</td><td>B3D(AC)</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3-d audio-visual corpus of affective communication&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td></tr><tr><td>bbc_pose</td><td>BBC Pose</td><td>Automatic and Efficient Human Pose Estimation for Sign Language Videos</td><td>Automatic and Efficient Human Pose Estimation for Sign Language Videos</td><td><a href="http://tomas.pfister.fi/files/charles13ijcv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic and efficient human pose estimation for sign language videos&sort=relevance" target="_blank">[s2]</a></td><td></td><td>213a579af9e4f57f071b884aa872651372b661fd</td></tr><tr><td>bfm</td><td>BFM</td><td>A 3D Face Model for Pose and Illumination Invariant Face Recognition</td><td>A 3D Face Model for Pose and Illumination Invariant Face Recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d face model for pose and illumination invariant face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td></tr><tr><td>bio_id</td><td>BioID Face</td><td>Robust Face Detection Using the Hausdorff Distance</td><td>Robust Face Detection Using the Hausdorff Distance</td><td><a href="https://pdfs.semanticscholar.org/4053/e3423fb70ad9140ca89351df49675197196a.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust face detection using the hausdorff distance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4053e3423fb70ad9140ca89351df49675197196a</td></tr><tr><td>bosphorus</td><td>The Bosphorus</td><td>Bosphorus Database for 3D Face Analysis</td><td>Bosphorus Database for 3D Face Analysis</td><td><a href="https://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=bosphorus database for 3d face analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2acf7e58f0a526b957be2099c10aab693f795973</td></tr><tr><td>bp4d_plus</td><td>BP4D+</td><td>Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</td><td>Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multimodal spontaneous emotion corpus for human behavior analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td></tr><tr><td>bpad</td><td>BPAD</td><td>Describing People: A Poselet-Based Approach to Attribute Classification</td><td>Describing people: A poselet-based approach to attribute classification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing people: a poselet-based approach to attribute classification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td></tr><tr><td>brainwash</td><td>Brainwash</td><td>End-to-End People Detection in Crowded Scenes</td><td>End-to-End People Detection in Crowded Scenes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=end-to-end people detection in crowded scenes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1bd1645a629f1b612960ab9bba276afd4cf7c666</td></tr><tr><td>bu_3dfe</td><td>BU-3DFE</td><td>A 3D Facial Expression Database For Facial Behavior Research</td><td>A 3D facial expression database for facial behavior research</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d facial expression database for facial behavior research&sort=relevance" target="_blank">[s2]</a></td><td></td><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td></tr><tr><td>cacd</td><td></td><td>Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval</td><td>Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval</td><td><a href="https://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=cross-age reference coding for age-invariant face recognition and retrieval&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c44c84540db1c38ace232ef34b03bda1c81ba039</td></tr><tr><td>cafe</td><td>#N/A</td><td>The Child Affective Facial Expression (CAFE) Set: Validity and reliability from untrained adults</td><td>The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</td><td><a href="https://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the child affective facial expression (cafe) set: validity and reliability from untrained adults&sort=relevance" target="_blank">[s2]</a></td><td></td><td>20388099cc415c772926e47bcbbe554e133343d1</td></tr><tr><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td>Pruning Training Sets for Learning of Object Categories</td><td>Pruning training sets for learning of object categories</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pruning training sets for learning of object categories&sort=relevance" target="_blank">[s2]</a></td><td></td><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td></tr><tr><td>caltech_crp</td><td>Caltech CRP</td><td>Fine-grained classification of pedestrians in video: Benchmark and state of the art</td><td>Fine-grained classification of pedestrians in video: Benchmark and state of the art</td><td><a href="https://arxiv.org/pdf/1605.06177.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fine-grained classification of pedestrians in video: benchmark and state of the art&sort=relevance" target="_blank">[s2]</a></td><td></td><td>060820f110a72cbf02c14a6d1085bd6e1d994f6a</td></tr><tr><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td>Pedestrian Detection: A Benchmark</td><td>Pedestrian detection: A benchmark</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian detection: a benchmark&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1dc35905a1deff8bc74688f2d7e2f48fd2273275</td></tr><tr><td>cas_peal</td><td>CAS-PEAL</td><td>The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</td><td>The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cas-peal large-scale chinese face database and baseline evaluations&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td></tr><tr><td>casablanca</td><td>Casablanca</td><td>Context-aware {CNNs} for person head detection</td><td>Context-Aware CNNs for Person Head Detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=context-aware {cnns} for person head detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td></tr><tr><td>casia_webface</td><td>CASIA Webface</td><td>Learning Face Representation from Scratch</td><td>Learning Face Representation from Scratch</td><td><a href="https://arxiv.org/pdf/1411.7923.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning face representation from scratch&sort=relevance" target="_blank">[s2]</a></td><td></td><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td></tr><tr><td>celeba</td><td>CelebA</td><td>Deep Learning Face Attributes in the Wild</td><td>Deep Learning Face Attributes in the Wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep learning face attributes in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td></tr><tr><td>cfd</td><td>CFD</td><td>The Chicago face database: A free stimulus set of faces and norming data</td><td>The Chicago face database: A free stimulus set of faces and norming data.</td><td><a href="https://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the chicago face database: a free stimulus set of faces and norming data&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td></tr><tr><td>chalearn</td><td>ChaLearn</td><td>ChaLearn Looking at People: A Review of Events and Resources</td><td>ChaLearn looking at people: A review of events and resources</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=chalearn looking at people: a review of events and resources&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td></tr><tr><td>chokepoint</td><td>ChokePoint</td><td>Patch-based Probabilistic Image Quality Assessment for Face Selection and Improved Video-based Face Recognition</td><td>Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=patch-based probabilistic image quality assessment for face selection and improved video-based face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td></tr><tr><td>clothing_co_parsing</td><td>CCP</td><td>Clothing Co-Parsing by Joint Image Segmentation and Labeling</td><td>Clothing Co-parsing by Joint Image Segmentation and Labeling</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clothing co-parsing by joint image segmentation and labeling&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2bf8541199728262f78d4dced6fb91479b39b738</td></tr><tr><td>cmdp</td><td>CMDP</td><td>Distance Estimation of an Unknown Person from a Portrait</td><td>Distance Estimation of an Unknown Person from a Portrait</td><td><a href="http://authors.library.caltech.edu/49084/13/FaceDistanceEstimation_RONCHI.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=distance estimation of an unknown person from a portrait&sort=relevance" target="_blank">[s2]</a></td><td></td><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td></tr><tr><td>cmu_pie</td><td>CMU PIE</td><td>The CMU Pose, Illumination, and Expression Database</td><td>The CMU Pose, Illumination, and Expression (PIE) Database</td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cmu pose, illumination, and expression database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d423acc78273b75134e2afd1777ba6d3a398973</td></tr><tr><td>coco</td><td>COCO</td><td>Microsoft COCO: Common Objects in Context</td><td>Microsoft COCO: Common Objects in Context</td><td><a href="https://arxiv.org/pdf/1405.0312.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=microsoft coco: common objects in context&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5e0f8c355a37a5a89351c02f174e7a5ddcb98683</td></tr><tr><td>coco_action</td><td>COCO-a</td><td>Describing Common Human Visual Actions in Images</td><td>Describing Common Human Visual Actions in Images</td><td><a href="https://arxiv.org/pdf/1506.02203.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing common human visual actions in images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td></tr><tr><td>coco_qa</td><td>COCO QA</td><td>Exploring Models and Data for Image Question Answering</td><td>Exploring Models and Data for Image Question Answering</td><td><a href="https://arxiv.org/pdf/1505.02074.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=exploring models and data for image question answering&sort=relevance" target="_blank">[s2]</a></td><td></td><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td></tr><tr><td>cofw</td><td>COFW</td><td>Robust face landmark estimation under occlusion</td><td>Robust Face Landmark Estimation under Occlusion</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust face landmark estimation under occlusion&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2724ba85ec4a66de18da33925e537f3902f21249</td></tr><tr><td>cohn_kanade</td><td>CK</td><td>Comprehensive Database for Facial Expression Analysis</td><td>Comprehensive Database for Facial Expression Analysis</td><td><a href="https://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=comprehensive database for facial expression analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td></tr><tr><td>complex_activities</td><td>Ongoing Complex Activities</td><td>Recognition of Ongoing Complex Activities by Sequence Prediction over a Hierarchical Label Space</td><td>Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognition of ongoing complex activities by sequence prediction over a hierarchical label space&sort=relevance" target="_blank">[s2]</a></td><td></td><td>65355cbb581a219bd7461d48b3afd115263ea760</td></tr><tr><td>cuhk_campus_03</td><td>CUHK03 Campus</td><td>Human Reidentification with Transferred Metric Learning</td><td>Human Reidentification with Transferred Metric Learning</td><td><a href="http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=human reidentification with transferred metric learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td></tr><tr><td>cuhk_campus_03</td><td>CUHK03 Campus</td><td>Locally Aligned Feature Transforms across Views</td><td>Locally Aligned Feature Transforms across Views</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=locally aligned feature transforms across views&sort=relevance" target="_blank">[s2]</a></td><td></td><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td></tr><tr><td>cuhk_campus_03</td><td>CUHK03 Campus</td><td>DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</td><td>DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deepreid: deep filter pairing neural network for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td></tr><tr><td>cvc_01_barcelona</td><td>CVC-01</td><td>Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection</td><td>Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=adaptive image sampling and windows classification for on-board pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>57fe081950f21ca03b5b375ae3e84b399c015861</td></tr><tr><td>ufi</td><td>UFI</td><td>Unconstrained Facial Images: Database for Face Recognition under Real-world Conditions</td><td>Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</td><td><a href="http://home.zcu.cz/~pkral/papers/kral_micai15.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=unconstrained facial images: database for face recognition under real-world conditions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4b4106614c1d553365bad75d7866bff0de6056ed</td></tr><tr><td>d3dfacs</td><td>D3DFACS</td><td>A FACS Valid 3D Dynamic Action Unit database with Applications to 3D Dynamic Morphable Facial Modelling</td><td>A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a facs valid 3d dynamic action unit database with applications to 3d dynamic morphable facial modelling&sort=relevance" target="_blank">[s2]</a></td><td></td><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td></tr><tr><td>dartmouth_children</td><td>Dartmouth Children</td><td>The Dartmouth Database of Children's Faces: Acquisition and validation of a new face stimulus set</td><td>The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</td><td><a href="https://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the dartmouth database of children's faces: acquisition and validation of a new face stimulus set&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td></tr><tr><td>data_61</td><td>Data61 Pedestrian</td><td>A Multi-Modal Graphical Model for Scene Analysis</td><td>A Multi-modal Graphical Model for Scene Analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a multi-modal graphical model for scene analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>563c940054e4b456661762c1ab858e6f730c3159</td></tr><tr><td>deep_fashion</td><td>DeepFashion</td><td>DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</td><td>DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deepfashion: powering robust clothes recognition and retrieval with rich annotations&sort=relevance" target="_blank">[s2]</a></td><td></td><td>18010284894ed0edcca74e5bf768ee2e15ef7841</td></tr><tr><td>deep_fashion</td><td>DeepFashion</td><td>Fashion Landmark Detection in the Wild</td><td>Fashion Landmark Detection in the Wild</td><td><a href="https://arxiv.org/pdf/1608.03049.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fashion landmark detection in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td></tr><tr><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td>Nighttime Face Recognition at Long Distance: Cross-distance and Cross-spectral Matching</td><td>Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</td><td><a href="https://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=nighttime face recognition at long distance: cross-distance and cross-spectral matching&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=performance measures and a data set for multi-target, multi-camera tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Improving Person Re-identification by Attribute and Identity Learning</td><td>Improving Person Re-identification by Attribute and Identity Learning</td><td><a href="https://arxiv.org/pdf/1703.07220.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=improving person re-identification by attribute and identity learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7f23a4bb0c777dd72cca7665a5f370ac7980217e</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro</td><td>Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro</td><td><a href="https://arxiv.org/pdf/1701.07717.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=unlabeled samples generated by gan improve the person re-identification baseline in vitro&sort=relevance" target="_blank">[s2]</a></td><td></td><td>15e1af79939dbf90790b03d8aa02477783fb1d0f</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Tracking Multiple People Online and in Real Time</td><td>Tracking Multiple People Online and in Real Time</td><td><a href="https://pdfs.semanticscholar.org/64e0/690dd176a93de9d4328f6e31fc4afe1e7536.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=tracking multiple people online and in real time&sort=relevance" target="_blank">[s2]</a></td><td></td><td>64e0690dd176a93de9d4328f6e31fc4afe1e7536</td></tr><tr><td>emotio_net</td><td>EmotioNet Database</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=emotionet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td></tr><tr><td>erce</td><td>ERCe</td><td>Video Synopsis by Heterogeneous Multi-source Correlation</td><td>Video Synopsis by Heterogeneous Multi-source Correlation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=video synopsis by heterogeneous multi-source correlation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b6c293f0420f7e945b5916ae44269fb53e139275</td></tr><tr><td>erce</td><td>ERCe</td><td>Learning from Multiple Sources for Video Summarisation</td><td>Learning from Multiple Sources for Video Summarisation</td><td><a href="https://arxiv.org/pdf/1501.03069.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning from multiple sources for video summarisation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>287ddcb3db5562235d83aee318f318b8d5e43fb1</td></tr><tr><td>europersons</td><td>EuroCity Persons</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td><a href="https://arxiv.org/pdf/1805.07193.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the eurocity persons dataset: a novel benchmark for object detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>72a155c987816ae81c858fddbd6beab656d86220</td></tr><tr><td>expw</td><td>ExpW</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td><a href="https://arxiv.org/pdf/1609.06426.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from facial expression recognition to interpersonal relation prediction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td></tr><tr><td>face_scrub</td><td>FaceScrub</td><td>A data-driven approach to cleaning large face datasets</td><td>A data-driven approach to cleaning large face datasets</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a data-driven approach to cleaning large face datasets&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td></tr><tr><td>face_tracer</td><td>FaceTracer</td><td>FaceTracer: A Search Engine for Large Collections of Images with Faces</td><td>FaceTracer: A Search Engine for Large Collections of Images with Faces</td><td><a href="https://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facetracer: a search engine for large collections of images with faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td></tr><tr><td>face_tracer</td><td>FaceTracer</td><td>Face Swapping: Automatically Replacing Faces in Photographs</td><td>Face swapping: automatically replacing faces in photographs</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face swapping: automatically replacing faces in photographs&sort=relevance" target="_blank">[s2]</a></td><td></td><td>670637d0303a863c1548d5b19f705860a23e285c</td></tr><tr><td>faceplace</td><td>Face Place</td><td>Recognizing disguised faces</td><td>Recognizing disguised faces</td><td><a href="https://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognizing disguised faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td></tr><tr><td>fddb</td><td>FDDB</td><td>FDDB: A Benchmark for Face Detection in Unconstrained Settings</td><td>FDDB: A benchmark for face detection in unconstrained settings</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fddb: a benchmark for face detection in unconstrained settings&sort=relevance" target="_blank">[s2]</a></td><td></td><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td></tr><tr><td>fei</td><td>FEI</td><td>Captura e Alinhamento de Imagens: Um Banco de Faces Brasileiro</td><td>A new ranking method for principal components analysis and its application to face image analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=captura e alinhamento de imagens: um banco de faces brasileiro&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8b56e33f33e582f3e473dba573a16b598ed9bcdc</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET Verification Testing Protocol for Face Recognition Algorithms</td><td>The FERET Verification Testing Protocol for Face Recognition Algorithms</td><td><a href="https://pdfs.semanticscholar.org/8d2a/1c768fce6f71584dd993fb97e7b6419aaf60.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret verification testing protocol for face recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0c4a139bb87c6743c7905b29a3cfec27a5130652</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td><a href="https://pdfs.semanticscholar.org/5099/7a5605c1f61e09e9a96789ed7495be6625aa.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret evaluation methodology for face-recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td></tr><tr><td>feret</td><td>FERET</td><td>FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</td><td>FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</td><td><a href="https://pdfs.semanticscholar.org/31de/9b3dd6106ce6eec9a35991b2b9083395fd0b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=feret ( face recognition technology ) recognition algorithm development and test results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>31de9b3dd6106ce6eec9a35991b2b9083395fd0b</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET database and evaluation procedure for face-recognition algorithms</td><td>The FERET database and evaluation procedure for face-recognition algorithms</td><td><a href="http://biometrics.nist.gov/cs_links/face/frvt/feret/FERET_Database_evaluation_procedure.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret database and evaluation procedure for face-recognition algorithms&sort=relevance" target="_blank">[s2]</a></td><td></td><td>dc8b25e35a3acb812beb499844734081722319b4</td></tr><tr><td>ferplus</td><td>FER+</td><td>Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution</td><td>Training deep networks for facial expression recognition with crowd-sourced label distribution</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=training deep networks for facial expression recognition with crowd-sourced label distribution&sort=relevance" target="_blank">[s2]</a></td><td></td><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td></tr><tr><td>fia</td><td>CMU FiA</td><td>The CMU Face In Action (FIA) Database</td><td>The CMU Face In Action (FIA) Database</td><td><a href="https://pdfs.semanticscholar.org/4766/2d1a368daf70ba70ef2d59eb6209f98b675d.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cmu face in action (fia) database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td></tr><tr><td>fiw_300</td><td>300-W</td><td>A semi-automatic methodology for facial landmark annotation</td><td>A Semi-automatic Methodology for Facial Landmark Annotation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a semi-automatic methodology for facial landmark annotation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td></tr><tr><td>fiw_300</td><td>300-W</td><td>300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge</td><td>300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=300 faces in-the-wild challenge: the first facial landmark localization challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td></tr><tr><td>fiw_300</td><td>300-W</td><td>300 faces In-the-wild challenge: Database and results</td><td>300 Faces In-The-Wild Challenge: database and results</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/1-s2.0-s0262885616000147-main.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=300 faces in-the-wild challenge: database and results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e4754afaa15b1b53e70743880484b8d0736990ff</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>FACE2GPS: Estimating geographic location from facial features</td><td>Exploring the geo-dependence of human face appearance</td><td><a href="http://cs.uky.edu/~jacobs/papers/islam2014faces.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face2gps: estimating geographic location from facial features&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2cd7821fcf5fae53a185624f7eeda007434ae037</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>Large-scale geo-facial image analysis</td><td>Large-scale geo-facial image analysis</td><td><a href="https://pdfs.semanticscholar.org/3ede/3ed28329bf48fbd06438a69c4f855bef003f.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large-scale geo-facial image analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4af89578ac237278be310f7660a408b03f12d603</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>Exploring the Geo-Dependence of Human Face Appearance</td><td>Exploring the geo-dependence of human face appearance</td><td><a href="http://cs.uky.edu/~jacobs/papers/islam2014faces.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=exploring the geo-dependence of human face appearance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2cd7821fcf5fae53a185624f7eeda007434ae037</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>GeoFaceExplorer: Exploring the Geo-Dependence of Facial Attributes</td><td>GeoFaceExplorer: exploring the geo-dependence of facial attributes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=geofaceexplorer: exploring the geo-dependence of facial attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>17b46e2dad927836c689d6787ddb3387c6159ece</td></tr><tr><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td>Maximum likelihood training of the embedded HMM for face detection and recognition</td><td>Maximum Likelihood Training of the Embedded HMM for Face Detection and Recognition</td><td><a href="http://www.researchgate.net/profile/Monson_Hayes/publication/221124512_Maximum_Likelihood_Training_of_the_Embedded_HMM_for_Face_Detection_and_Recognition/links/0deec53509be9d6f55000000.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=maximum likelihood training of the embedded hmm for face detection and recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td></tr><tr><td>gfw</td><td>Grouping Face in the Wild</td><td>Merge or Not? Learning to Group Faces via Imitation Learning</td><td>Merge or Not? Learning to Group Faces via Imitation Learning</td><td><a href="https://arxiv.org/pdf/1707.03986.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=merge or not? learning to group faces via imitation learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e58dd160a76349d46f881bd6ddbc2921f08d1050</td></tr><tr><td>graz</td><td>Graz Pedestrian</td><td>Weak Hypotheses and Boosting for Generic Object Detection and Recognition</td><td>Weak Hypotheses and Boosting for Generic Object Detection and Recognition</td><td><a href="https://pdfs.semanticscholar.org/0c91/808994a250d7be332400a534a9291ca3b60e.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=weak hypotheses and boosting for generic object detection and recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0c91808994a250d7be332400a534a9291ca3b60e</td></tr><tr><td>h3d</td><td>H3D</td><td>Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations</td><td>Poselets: Body part detectors trained using 3D human pose annotations</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=poselets: body part detectors trained using 3d human pose annotations&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2830fb5282de23d7784b4b4bc37065d27839a412</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>The HDA+ data set for research on fully automated re-identification systems</td><td>The HDA+ Data Set for Research on Fully Automated Re-identification Systems</td><td><a href="https://pdfs.semanticscholar.org/8f02/ec0be21461fbcedf51d864f944cfc42c875f.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the hda+ data set for research on fully automated re-identification systems&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8f02ec0be21461fbcedf51d864f944cfc42c875f</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>A Multi-camera video data set for research on High-Definition surveillance</td><td>HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</td><td><a href="https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a multi-camera video data set for research on high-definition surveillance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>bd88bb2e4f351352d88ee7375af834360e223498</td></tr><tr><td>helen</td><td>Helen</td><td>Interactive Facial Feature Localization</td><td>Interactive Facial Feature Localization</td><td><a href="https://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=interactive facial feature localization&sort=relevance" target="_blank">[s2]</a></td><td></td><td>95f12d27c3b4914e0668a268360948bce92f7db3</td></tr><tr><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td>Hi4D-ADSIP 3-D dynamic facial articulation database</td><td>Hi4D-ADSIP 3-D dynamic facial articulation database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hi4d-adsip 3-d dynamic facial articulation database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a8d0b149c2eadaa02204d3e4356fbc8eccf3b315</td></tr><tr><td>hipsterwars</td><td>Hipsterwars</td><td>Hipster Wars: Discovering Elements of Fashion Styles</td><td>Hipster Wars: Discovering Elements of Fashion Styles</td><td><a href="https://pdfs.semanticscholar.org/04c2/cda00e5536f4b1508cbd80041e9552880e67.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hipster wars: discovering elements of fashion styles&sort=relevance" target="_blank">[s2]</a></td><td></td><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td></tr><tr><td>hollywood_headset</td><td>HollywoodHeads</td><td>Context-aware CNNs for person head detection</td><td>Context-Aware CNNs for Person Head Detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=context-aware cnns for person head detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td></tr><tr><td>hrt_transgender</td><td>HRT Transgender</td><td>Is the Eye Region More Reliable Than the Face? A Preliminary Study of Face-based Recognition on a Transgender Dataset</td><td>Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=is the eye region more reliable than the face? a preliminary study of face-based recognition on a transgender dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td></tr><tr><td>ibm_dif</td><td>IBM Diversity in Faces</td><td>Diversity in Faces</td><td>Facial Coding Scheme Reference 1 Craniofacial Distances</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=diversity in faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ab7cff2ccda7269b73ff6efd9d37e1318f7db25</td></tr><tr><td>ifad</td><td>IFAD</td><td>Indian Face Age Database: A Database for Face Recognition with Age Variation</td><td>Indian Face Age Database: A Database for Face Recognition with Age Variation</td><td><a href="https://pdfs.semanticscholar.org/025e/4cf3fd3fdeced91e9373b56ee14af7ca432c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=indian face age database: a database for face recognition with age variation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td></tr><tr><td>ifdb</td><td>IFDB</td><td>Iranian Face Database and Evaluation with a New Detection Algorithm</td><td>Iranian Face Database and Evaluation with a New Detection Algorithm</td><td><a href="https://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iranian face database and evaluation with a new detection algorithm&sort=relevance" target="_blank">[s2]</a></td><td></td><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td></tr><tr><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td>Automated human identification using ear imaging</td><td>Automated Human Identification Using Ear Imaging</td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automated human identification using ear imaging&sort=relevance" target="_blank">[s2]</a></td><td></td><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td></tr><tr><td>ijb_b</td><td>IJB-B</td><td>IARPA Janus Benchmark-B Face Dataset</td><td>IARPA Janus Benchmark-B Face Dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iarpa janus benchmark-b face dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td></tr><tr><td>ijb_a</td><td>IJB-A</td><td>Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A</td><td>Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pushing the frontiers of unconstrained face detection and recognition: iarpa janus benchmark a&sort=relevance" target="_blank">[s2]</a></td><td></td><td>140c95e53c619eac594d70f6369f518adfea12ef</td></tr><tr><td>ijb_c</td><td>IJB-C</td><td>IARPA Janus Benchmark C</td><td>IARPA Janus Benchmark - C: Face Dataset and Protocol</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iarpa janus benchmark c&sort=relevance" target="_blank">[s2]</a></td><td></td><td>57178b36c21fd7f4529ac6748614bb3374714e91</td></tr><tr><td>ilids_mcts</td><td>i-LIDS Multiple-Camera</td><td>Imagery Library for Intelligent Detection Systems: The i-LIDS User Guide</td><td>Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=imagery library for intelligent detection systems: the i-lids user guide&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td></tr><tr><td>ilids_mcts_vid</td><td>iLIDS-VID</td><td>Person Re-Identi cation by Video Ranking</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identi cation by video ranking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>imdb_face</td><td>IMDb Face</td><td>The Devil of Face Recognition is in the Noise</td><td>The Devil of Face Recognition is in the Noise</td><td><a href="https://arxiv.org/pdf/1807.11649.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the devil of face recognition is in the noise&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9e31e77f9543ab42474ba4e9330676e18c242e72</td></tr><tr><td>imdb_wiki</td><td>IMDB</td><td>Deep expectation of real and apparent age from a single image without facial landmarks</td><td>Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks</td><td><a href="http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep expectation of real and apparent age from a single image without facial landmarks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>10195a163ab6348eef37213a46f60a3d87f289c5</td></tr><tr><td>imdb_wiki</td><td>IMDB</td><td>DEX: Deep EXpectation of apparent age from a single image</td><td>DEX: Deep EXpectation of Apparent Age from a Single Image</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=dex: deep expectation of apparent age from a single image&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td></tr><tr><td>immediacy</td><td>Immediacy</td><td>Multi-task Recurrent Neural Network for Immediacy Prediction</td><td>Multi-task Recurrent Neural Network for Immediacy Prediction</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-task recurrent neural network for immediacy prediction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td></tr><tr><td>imsitu</td><td>imSitu</td><td>Situation Recognition: Visual Semantic Role Labeling for Image Understanding</td><td>Situation Recognition: Visual Semantic Role Labeling for Image Understanding</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=situation recognition: visual semantic role labeling for image understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>51eba481dac6b229a7490f650dff7b17ce05df73</td></tr><tr><td>jaffe</td><td>JAFFE</td><td>Coding Facial Expressions with Gabor Wavelets</td><td>Coding Facial Expressions with Gabor Wavelets</td><td><a href="http://physics.lbl.gov/patrecog/images/Facerecog_gabor.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=coding facial expressions with gabor wavelets&sort=relevance" target="_blank">[s2]</a></td><td></td><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td></tr><tr><td>jpl_pose</td><td>JPL-Interaction dataset</td><td>First-Person Activity Recognition: What Are They Doing to Me?</td><td>First-Person Activity Recognition: What Are They Doing to Me?</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=first-person activity recognition: what are they doing to me?&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Understanding Kin Relationships in a Photo</td><td>Understanding Kin Relationships in a Photo</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=understanding kin relationships in a photo&sort=relevance" target="_blank">[s2]</a></td><td></td><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Kinship Verification through Transfer Learning</td><td>Kinship Verification through Transfer Learning</td><td><a href="https://pdfs.semanticscholar.org/4793/f11fbca4a7dba898b9fff68f70d868e2497c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=kinship verification through transfer learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td></tr><tr><td>kitti</td><td>KITTI</td><td>Vision meets Robotics: The KITTI Dataset</td><td>Vision meets robotics: The KITTI dataset</td><td><a href="https://pdfs.semanticscholar.org/026e/3363b7f76b51cc711886597a44d5f1fd1de2.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vision meets robotics: the kitti dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>026e3363b7f76b51cc711886597a44d5f1fd1de2</td></tr><tr><td>lag</td><td>LAG</td><td>Large Age-Gap Face Verification by Feature Injection in Deep Networks</td><td>Large age-gap face verification by feature injection in deep networks</td><td><a href="https://arxiv.org/pdf/1602.06149.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large age-gap face verification by feature injection in deep networks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td></tr><tr><td>laofiw</td><td>LAOFIW</td><td>Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings</td><td>Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings</td><td><a href="https://arxiv.org/pdf/1809.02169.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=turning a blind eye: explicit removal of biases and variation from deep neural network embeddings&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4eab317b5ac436a949849ed286baa3de2a541eef</td></tr><tr><td>large_scale_person_search</td><td>Large Scale Person Search</td><td>End-to-End Deep Learning for Person Search</td><td>End-to-End Deep Learning for Person Search</td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=end-to-end deep learning for person search&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td></tr><tr><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td><a href="http://www.bmva.org/bmvc/2010/conference/paper12/abstract12.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td></tr><tr><td>lfpw</td><td>LFPW</td><td>Localizing Parts of Faces Using a Consensus of Exemplars</td><td>Localizing Parts of Faces Using a Consensus of Exemplars</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=localizing parts of faces using a consensus of exemplars&sort=relevance" target="_blank">[s2]</a></td><td></td><td>140438a77a771a8fb656b39a78ff488066eb6b50</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: Updates and New Reporting Procedures</td><td>Labeled Faces in the Wild : Updates and New Reporting Procedures</td><td><a href="https://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: updates and new reporting procedures&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments</td><td>Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments</td><td><a href="https://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: a database for studying face recognition in unconstrained environments&sort=relevance" target="_blank">[s2]</a></td><td></td><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: A Survey</td><td>Labeled Faces in the Wild: A Survey</td><td><a href="https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: a survey&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td></tr><tr><td>lfw</td><td>LFW</td><td>Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</td><td>Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=effective unconstrained face recognition by combining multiple descriptors and learned background statistics&sort=relevance" target="_blank">[s2]</a></td><td></td><td>133f01aec1534604d184d56de866a4bd531dac87</td></tr><tr><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td>XM2VTSDB: The Extended M2VTS Database</td><td>XM2VTSDB : The extended M2VTS database</td><td><a href="https://pdfs.semanticscholar.org/b626/28ac06bbac998a3ab825324a41a11bc3a988.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=xm2vtsdb: the extended m2vts database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b62628ac06bbac998a3ab825324a41a11bc3a988</td></tr><tr><td>mafa</td><td>MAsked FAces</td><td>Detecting Masked Faces in the Wild with LLE-CNNs</td><td>Detecting Masked Faces in the Wild with LLE-CNNs</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=detecting masked faces in the wild with lle-cnns&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9cc8cf0c7d7fa7607659921b6ff657e17e135ecc</td></tr><tr><td>mafl</td><td>MAFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td><a href="https://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td></tr><tr><td>mafl</td><td>MAFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>malf</td><td>MALF</td><td>Fine-grained Evaluation on Face Detection in the Wild.</td><td>Fine-grained evaluation on face detection in the wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fine-grained evaluation on face detection in the wild.&sort=relevance" target="_blank">[s2]</a></td><td></td><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td></tr><tr><td>mapillary</td><td>Mapillary</td><td>The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</td><td>The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mapillary vistas dataset for semantic understanding of street scenes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td></tr><tr><td>market_1501</td><td>Market 1501</td><td>Improving Person Re-identification by Attribute and Identity Learning</td><td>Improving Person Re-identification by Attribute and Identity Learning</td><td><a href="https://arxiv.org/pdf/1703.07220.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=improving person re-identification by attribute and identity learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7f23a4bb0c777dd72cca7665a5f370ac7980217e</td></tr><tr><td>market_1501</td><td>Market 1501</td><td>Scalable Person Re-identification: A Benchmark</td><td>Scalable Person Re-identification: A Benchmark</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scalable person re-identification: a benchmark&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td></tr><tr><td>market_1501</td><td>Market 1501</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>mars</td><td>MARS</td><td>MARS: A Video Benchmark for Large-Scale Person Re-identification</td><td>MARS: A Video Benchmark for Large-Scale Person Re-Identification</td><td><a href="https://pdfs.semanticscholar.org/c038/7e788a52f10bf35d4d50659cfa515d89fbec.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=mars: a video benchmark for large-scale person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td></tr><tr><td>mcgill</td><td>McGill Real World</td><td>Hierarchical Temporal Graphical Model for Head Pose Estimation and Subsequent Attribute Classification in Real-World Videos</td><td>Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2d45cfd838016a6e39f6b766ffe85acd649440c7</td></tr><tr><td>megaage</td><td>MegaAge</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td><a href="https://arxiv.org/pdf/1708.09687.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=quantifying facial age by posterior of age comparisons&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c72a2ea819df9b0e8cd267eebcc6528b8741e03d</td></tr><tr><td>megaface</td><td>MegaFace</td><td>Level Playing Field for Million Scale Face Recognition</td><td>Level Playing Field for Million Scale Face Recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=level playing field for million scale face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td></tr><tr><td>megaface</td><td>MegaFace</td><td>The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</td><td>The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the megaface benchmark: 1 million faces for recognition at scale&sort=relevance" target="_blank">[s2]</a></td><td></td><td>96e0cfcd81cdeb8282e29ef9ec9962b125f379b0</td></tr><tr><td>mit_cbcl</td><td>MIT CBCL</td><td>Component-based Face Recognition with 3D Morphable Models</td><td>Component-Based Face Recognition with 3D Morphable Models</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=component-based face recognition with 3d morphable models&sort=relevance" target="_blank">[s2]</a></td><td></td><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td></tr><tr><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td>WEB-BASED DATABASE FOR FACIAL EXPRESSION ANALYSIS</td><td>Web-based database for facial expression analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=web-based database for facial expression analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td></tr><tr><td>moments_in_time</td><td>Moments in Time</td><td>Moments in Time Dataset: one million videos for event understanding</td><td>Moments in Time Dataset: one million videos for event understanding</td><td><a href="https://arxiv.org/pdf/1801.03150.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=moments in time dataset: one million videos for event understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>41976ebc8ab76d9a6861487c97cc7fcbe3b6015f</td></tr><tr><td>morph</td><td>MORPH Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>morph_nc</td><td>MORPH Non-Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>mot</td><td>MOT</td><td>Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</td><td>Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</td><td><a href="https://cvhci.anthropomatik.kit.edu/images/stories/msmmi/papers/eurasip2008.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=evaluating multiple object tracking performance: the clear mot metrics&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2258e01865367018ed6f4262c880df85b94959f8</td></tr><tr><td>mot</td><td>MOT</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td><a href="https://arxiv.org/pdf/1609.01775.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=performance measures and a data set for multi-target, multi-camera tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td></tr><tr><td>mpi_large</td><td>Large MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>mpi_small</td><td>Small MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="https://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>mpii_gaze</td><td>MPIIGaze</td><td>Appearance-based Gaze Estimation in the Wild</td><td>Appearance-based gaze estimation in the wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=appearance-based gaze estimation in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td></tr><tr><td>mpii_human_pose</td><td>MPII Human Pose</td><td>2D Human Pose Estimation: New Benchmark and State of the Art Analysis</td><td>2D Human Pose Estimation: New Benchmark and State of the Art Analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=2d human pose estimation: new benchmark and state of the art analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td></tr><tr><td>mr2</td><td>MR2</td><td>The MR2: A multi-racial mega-resolution database of facial stimuli</td><td>The MR2: A multi-racial, mega-resolution database of facial stimuli.</td><td><a href="http://www.mpmlab.org/The%20MR2%20face%20database.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mr2: a multi-racial mega-resolution database of facial stimuli&sort=relevance" target="_blank">[s2]</a></td><td></td><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td></tr><tr><td>mrp_drone</td><td>MRP Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td><a href="https://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=investigating open-world person re-identification using a drone&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td></tr><tr><td>msceleb</td><td>MsCeleb</td><td>MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</td><td>MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</td><td><a href="https://arxiv.org/pdf/1607.08221.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ms-celeb-1m: a dataset and benchmark for large-scale face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>291265db88023e92bb8c8e6390438e5da148e8f5</td></tr><tr><td>msmt_17</td><td>MSMT17</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-identification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person transfer gan to bridge domain gap for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0cc5f73a37723a6dd465924143f1cb4976d0169</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td><a href="https://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8a3c5507237957d013a0fe0f082cab7f757af6ee</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>multi_pie</td><td>MULTIPIE</td><td>Multi-PIE</td><td>The CMU Pose, Illumination, and Expression (PIE) Database</td><td><a href="http://www.comp.nus.edu.sg/~tsim/piedb.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-pie&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d423acc78273b75134e2afd1777ba6d3a398973</td></tr><tr><td>names_and_faces</td><td>News Dataset</td><td>Names and Faces</td><td>Names and faces in the news</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=names and faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2fda164863a06a92d3a910b96eef927269aeb730</td></tr><tr><td>nova_emotions</td><td>Novaemötions Dataset</td><td>Crowdsourcing facial expressions for affective-interaction</td><td>Crowdsourcing facial expressions for affective-interaction</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=crowdsourcing facial expressions for affective-interaction&sort=relevance" target="_blank">[s2]</a></td><td></td><td>c06b13d0ec3f5c43e2782cd22542588e233733c3</td></tr><tr><td>orl</td><td>ORL</td><td>Parameterisation of a Stochastic Model for Human Face Identification</td><td>Parameterisation of a stochastic model for human face identification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=parameterisation of a stochastic model for human face identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>55206f0b5f57ce17358999145506cd01e570358c</td></tr><tr><td>pa_100k</td><td>PA-100K</td><td>HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis</td><td>HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hydraplus-net: attentive deep features for pedestrian analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>f41c7bb02fc97d5fb9cadd7a49c3e558a1c58a44</td></tr><tr><td>penn_fudan</td><td>Penn Fudan</td><td>Object Detection Combining Recognition and Segmentation</td><td>Object Detection Combining Recognition and Segmentation</td><td><a href="https://pdfs.semanticscholar.org/3394/168ff0719b03ff65bcea35336a76b21fe5e4.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=object detection combining recognition and segmentation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td></tr><tr><td>peta</td><td>PETA</td><td>Pedestrian Attribute Recognition At Far Distance</td><td>Pedestrian Attribute Recognition At Far Distance</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute recognition at far distance&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td></tr><tr><td>pets</td><td>PETS 2017</td><td>PETS 2017: Dataset and Challenge</td><td>PETS 2017: Dataset and Challenge</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pets 2017: dataset and challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td></tr><tr><td>pilot_parliament</td><td>PPB</td><td>Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</td><td>Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification</td><td><a href="http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a-supp.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=gender shades: intersectional accuracy disparities in commercial gender classification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>18858cc936947fc96b5c06bbe3c6c2faa5614540</td></tr><tr><td>pipa</td><td>PIPA</td><td>Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues</td><td>Beyond frontal faces: Improving Person Recognition using multiple cues</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=beyond frontal faces: improving person recognition using multiple cues&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0a85bdff552615643dd74646ac881862a7c7072d</td></tr><tr><td>pku_reid</td><td>PKU-Reid</td><td>Swiss-System Based Cascade Ranking for Gait-based Person Re-identification</td><td>Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</td><td><a href="https://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=swiss-system based cascade ranking for gait-based person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td></tr><tr><td>pku_reid</td><td>PKU-Reid</td><td>Orientation driven bag of appearances for person re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="https://arxiv.org/pdf/1605.02464.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>precarious</td><td>Precarious</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians With Adversarial Imposters</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=expecting the unexpected: training detectors for unusual pedestrians with adversarial imposters&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td></tr><tr><td>prid</td><td>PRID</td><td>Person Re-Identification by Descriptive and Discriminative Classification</td><td>Person Re-identification by Descriptive and Discriminative Classification</td><td><a href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identification by descriptive and discriminative classification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td></tr><tr><td>prw</td><td>PRW</td><td>Person Re-identification in the Wild</td><td>Person Re-identification in the Wild</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identification in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0b84f07af44f964817675ad961def8a51406dd2e</td></tr><tr><td>psu</td><td>PSU</td><td>Vision-based Analysis of Small Groups in Pedestrian Crowds</td><td>Vision-Based Analysis of Small Groups in Pedestrian Crowds</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vision-based analysis of small groups in pedestrian crowds&sort=relevance" target="_blank">[s2]</a></td><td></td><td>066000d44d6691d27202896691f08b27117918b9</td></tr><tr><td>pubfig</td><td>PubFig</td><td>Attribute and Simile Classifiers for Face Verification</td><td>Attribute and simile classifiers for face verification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=attribute and simile classifiers for face verification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td></tr><tr><td>put_face</td><td>Put Face</td><td>The PUT face database</td><td>The put face database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the put face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>ae0aee03d946efffdc7af2362a42d3750e7dd48a</td></tr><tr><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td>Surveillance Face Recognition Challenge</td><td>Surveillance Face Recognition Challenge</td><td><a href="https://arxiv.org/pdf/1804.09691.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=surveillance face recognition challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2306b2a8fba28539306052764a77a0d0f5d1236a</td></tr><tr><td>rafd</td><td>RaFD</td><td>Presentation and validation of the Radboud Faces Database</td><td>Presentation and validation of the Radboud Faces Database</td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=presentation and validation of the radboud faces database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td></tr><tr><td>raid</td><td>RAiD</td><td>Consistent Re-identification in a Camera Network</td><td>Consistent Re-identification in a Camera Network</td><td><a href="https://pdfs.semanticscholar.org/c27f/099e6e7e3f7f9979cbe9e0a5175fc5848ea0.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=consistent re-identification in a camera network&sort=relevance" target="_blank">[s2]</a></td><td></td><td>09d78009687bec46e70efcf39d4612822e61cb8c</td></tr><tr><td>rap_pedestrian</td><td>RAP</td><td>A Richly Annotated Dataset for Pedestrian Attribute Recognition</td><td>A Richly Annotated Dataset for Pedestrian Attribute Recognition</td><td><a href="https://arxiv.org/pdf/1603.07054.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a richly annotated dataset for pedestrian attribute recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>221c18238b829c12b911706947ab38fd017acef7</td></tr><tr><td>reseed</td><td>ReSEED</td><td>ReSEED: Social Event dEtection Dataset</td><td>ReSEED: social event dEtection dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=reseed: social event detection dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>54983972aafc8e149259d913524581357b0f91c3</td></tr><tr><td>saivt</td><td>SAIVT SoftBio</td><td>A Database for Person Re-Identification in Multi-Camera Surveillance Networks</td><td>A Database for Person Re-Identification in Multi-Camera Surveillance Networks</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a database for person re-identification in multi-camera surveillance networks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td></tr><tr><td>sarc3d</td><td>Sarc3D</td><td>SARC3D: a new 3D body model for People Tracking and Re-identification</td><td>SARC3D: A New 3D Body Model for People Tracking and Re-identification</td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sarc3d: a new 3d body model for people tracking and re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td></tr><tr><td>scface</td><td>SCface</td><td>SCface – surveillance cameras face database</td><td>SCface – surveillance cameras face database</td><td><a href="http://scface.org/SCface%20-%20Surveillance%20Cameras%20Face%20Database.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scface – surveillance cameras face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>29a705a5fa76641e0d8963f1fdd67ee4c0d92d3d</td></tr><tr><td>scut_fbp</td><td>SCUT-FBP</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scut-fbp: a benchmark dataset for facial beauty perception&sort=relevance" target="_blank">[s2]</a></td><td></td><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td></tr><tr><td>scut_head</td><td>SCUT HEAD</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td><a href="https://arxiv.org/pdf/1803.09256.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=detecting heads using feature refine net and cascaded multi-scale architecture&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d3200d49a19a4a4e4e9745ee39649b65d80c834b</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</td><td>A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a spatio-temporal appearance representation for video-based pedestrian re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3b4ec8af470948a72a6ed37a9fd226719a874ebc</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>Local descriptors encoded by Fisher vectors for person re-identification</td><td>Local Descriptors Encoded by Fisher Vectors for Person Re-identification</td><td><a href="https://pdfs.semanticscholar.org/a105/f1ef67b4b02da38eadce8ffb4e13aa301a93.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=local descriptors encoded by fisher vectors for person re-identification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>46a01565e6afe7c074affb752e7069ee3bf2e4ef</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>Person reidentification by video ranking</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person reidentification by video ranking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>social_relation</td><td>Social Relation</td><td>Learning Social Relation Traits from Face Images</td><td>Learning Social Relation Traits from Face Images</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning social relation traits from face images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2a171f8d14b6b8735001a11c217af9587d095848</td></tr><tr><td>soton</td><td>SOTON HiD</td><td>On a Large Sequence-Based Human Gait Database</td><td>On a Large Sequence-Based Human Gait Database</td><td><a href="https://pdfs.semanticscholar.org/4f93/cd09785c6e77bf4bc5a788e079df524c8d21.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=on a large sequence-based human gait database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td></tr><tr><td>sports_videos_in_the_wild</td><td>SVW</td><td>Sports Videos in the Wild (SVW): A Video Dataset for Sports Analysis</td><td>Sports Videos in the Wild (SVW): A video dataset for sports analysis</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sports videos in the wild (svw): a video dataset for sports analysis&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td></tr><tr><td>stair_actions</td><td>STAIR Action</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td><a href="https://arxiv.org/pdf/1804.04326.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stair actions: a video dataset of everyday home actions&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td></tr><tr><td>stanford_drone</td><td>Stanford Drone</td><td>Learning Social Etiquette: Human Trajectory Prediction In Crowded Scenes</td><td>Social LSTM: Human Trajectory Prediction in Crowded Spaces</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning social etiquette: human trajectory prediction in crowded scenes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>570f37ed63142312e6ccdf00ecc376341ec72b9f</td></tr><tr><td>stickmen_buffy</td><td>Buffy Stickmen</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td><a href="http://www.bmva.org/bmvc/2010/conference/paper12/abstract12.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td></tr><tr><td>stickmen_buffy</td><td>Buffy Stickmen</td><td>Learning to Parse Images of Articulated Objects</td><td>Learning to parse images of articulated bodies</td><td><a href="http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_899.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to parse images of articulated objects&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>stickmen_family</td><td>We Are Family Stickmen</td><td>We Are Family: Joint Pose Estimation of Multiple Persons</td><td>We Are Family: Joint Pose Estimation of Multiple Persons</td><td><a href="http://eprints.pascal-network.org/archive/00007964/01/eichner10eccv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=we are family: joint pose estimation of multiple persons&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td></tr><tr><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Learning to parse images of articulated bodies</td><td><a href="http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_899.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td>Learning to Parse Images of Articulated Objects</td><td>Learning to parse images of articulated bodies</td><td><a href="http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_899.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to parse images of articulated objects&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>sun_attributes</td><td>SUN</td><td>The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</td><td>The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</td><td><a href="http://www.cc.gatech.edu/~hays/papers/attribute_ijcv.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the sun attribute database: beyond categories for deeper scene understanding&sort=relevance" target="_blank">[s2]</a></td><td></td><td>66e6f08873325d37e0ec20a4769ce881e04e964e</td></tr><tr><td>svs</td><td>SVS</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute classification in surveillance: database and evaluation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td></tr><tr><td>texas_3dfrd</td><td>Texas 3DFRD</td><td>Anthropometric 3D Face Recognition</td><td>Anthropometric 3D Face Recognition</td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=anthropometric 3d face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td></tr><tr><td>texas_3dfrd</td><td>Texas 3DFRD</td><td>Texas 3D Face Recognition Database</td><td>Texas 3D Face Recognition Database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=texas 3d face recognition database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>4d58f886f5150b2d5e48fd1b5a49e09799bf895d</td></tr><tr><td>tiny_faces</td><td>TinyFace</td><td>Low-Resolution Face Recognition</td><td>Low-Resolution Face Recognition</td><td><a href="https://arxiv.org/pdf/1811.08965.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=low-resolution face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>8990cdce3f917dad622e43e033db686b354d057c</td></tr><tr><td>tiny_images</td><td>Tiny Images</td><td>80 million tiny images: a large dataset for non-parametric object and scene recognition</td><td>80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=80 million tiny images: a large dataset for non-parametric object and scene recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td></tr><tr><td>tisi</td><td>Times Square Intersection</td><td>Video Synopsis by Heterogeneous Multi-source Correlation</td><td>Video Synopsis by Heterogeneous Multi-source Correlation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=video synopsis by heterogeneous multi-source correlation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b6c293f0420f7e945b5916ae44269fb53e139275</td></tr><tr><td>tisi</td><td>Times Square Intersection</td><td>Learning from Multiple Sources for Video Summarisation</td><td>Learning from Multiple Sources for Video Summarisation</td><td><a href="https://arxiv.org/pdf/1501.03069.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning from multiple sources for video summarisation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>287ddcb3db5562235d83aee318f318b8d5e43fb1</td></tr><tr><td>oxford_town_centre</td><td>TownCentre</td><td>Stable Multi-Target Tracking in Real-Time Surveillance Video</td><td>Stable multi-target tracking in real-time surveillance video</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stable multi-target tracking in real-time surveillance video&sort=relevance" target="_blank">[s2]</a></td><td></td><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td></tr><tr><td>tud_brussels</td><td>TUD-Brussels</td><td>Multi-Cue Onboard Pedestrian Detection</td><td>Multi-cue onboard pedestrian detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-cue onboard pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td></tr><tr><td>tud_campus</td><td>TUD-Campus</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tud_crossing</td><td>TUD-Crossing</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tud_motionpairs</td><td>TUD-Motionparis</td><td>Multi-Cue Onboard Pedestrian Detection</td><td>Multi-cue onboard pedestrian detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-cue onboard pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td></tr><tr><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tvhi</td><td>TVHI</td><td>High Five: Recognising human interactions in TV shows</td><td>High Five: Recognising human interactions in TV shows</td><td><a href="https://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=high five: recognising human interactions in tv shows&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td></tr><tr><td>uccs</td><td>UCCS</td><td>Large scale unconstrained open set face database</td><td>Large scale unconstrained open set face database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large scale unconstrained open set face database&sort=relevance" target="_blank">[s2]</a></td><td></td><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td></tr><tr><td>uccs</td><td>UCCS</td><td>Unconstrained Face Detection and Open-Set Face Recognition Challenge</td><td>Unconstrained Face Detection and Open-Set Face Recognition Challenge</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=unconstrained face detection and open-set face recognition challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>d4f1eb008eb80595bcfdac368e23ae9754e1e745</td></tr><tr><td>ucf_101</td><td>UCF101</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td><a href="https://arxiv.org/pdf/1212.0402.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ucf101: a dataset of 101 human actions classes from videos in the wild&sort=relevance" target="_blank">[s2]</a></td><td></td><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td></tr><tr><td>ucf_crowd</td><td>UCF-CC-50</td><td>Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images</td><td>Multi-source Multi-scale Counting in Extremely Dense Crowd Images</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-source multi-scale counting in extremely dense crowd images&sort=relevance" target="_blank">[s2]</a></td><td></td><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td></tr><tr><td>ucf_selfie</td><td>UCF Selfie</td><td>How to Take a Good Selfie?</td><td>How to Take a Good Selfie?</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=how to take a good selfie?&sort=relevance" target="_blank">[s2]</a></td><td></td><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td></tr><tr><td>ufdd</td><td>UFDD</td><td>Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</td><td>Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</td><td><a href="https://arxiv.org/pdf/1804.10275.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pushing the limits of unconstrained face detection: a challenge dataset and baseline results&sort=relevance" target="_blank">[s2]</a></td><td></td><td>3531332efe19be21e7401ba1f04570a142617236</td></tr><tr><td>umb</td><td>UMB</td><td>UMB-DB: A Database of Partially Occluded 3D Faces</td><td>UMB-DB: A database of partially occluded 3D faces</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=umb-db: a database of partially occluded 3d faces&sort=relevance" target="_blank">[s2]</a></td><td></td><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td></tr><tr><td>umd_faces</td><td>UMD</td><td>UMDFaces: An Annotated Face Dataset for Training Deep Networks</td><td>UMDFaces: An annotated face dataset for training deep networks</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=umdfaces: an annotated face dataset for training deep networks&sort=relevance" target="_blank">[s2]</a></td><td></td><td>31b05f65405534a696a847dd19c621b7b8588263</td></tr><tr><td>umd_faces</td><td>UMD</td><td>The Do's and Don'ts for CNN-based Face Verification</td><td>The Do’s and Don’ts for CNN-Based Face Verification</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the do's and don'ts for cnn-based face verification&sort=relevance" target="_blank">[s2]</a></td><td></td><td>71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6</td></tr><tr><td>urban_tribes</td><td>Urban Tribes</td><td>From Bikers to Surfers: Visual Recognition of Urban Tribes</td><td>From Bikers to Surfers: Visual Recognition of Urban Tribes</td><td><a href="http://vision.cornell.edu/se3/wp-content/uploads/2014/09/utribes_bmvc13_final.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from bikers to surfers: visual recognition of urban tribes&sort=relevance" target="_blank">[s2]</a></td><td></td><td>774cbb45968607a027ae4729077734db000a1ec5</td></tr><tr><td>vgg_celebs_in_places</td><td>CIP</td><td>Faces in Places: Compound Query Retrieval</td><td>Faces in Places: compound query retrieval</td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=faces in places: compound query retrieval&sort=relevance" target="_blank">[s2]</a></td><td></td><td>7ebb153704706e457ab57b432793d2b6e5d12592</td></tr><tr><td>vgg_faces</td><td>VGG Face</td><td>Deep Face Recognition</td><td>Deep Face Recognition</td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep face recognition&sort=relevance" target="_blank">[s2]</a></td><td></td><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td></tr><tr><td>vgg_faces2</td><td>VGG Face2</td><td>VGGFace2: A dataset for recognising faces across pose and age</td><td>VGGFace2: A Dataset for Recognising Faces across Pose and Age</td><td><a href="https://arxiv.org/pdf/1710.08092.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vggface2: a dataset for recognising faces across pose and age&sort=relevance" target="_blank">[s2]</a></td><td></td><td>70c59dc3470ae867016f6ab0e008ac8ba03774a1</td></tr><tr><td>viper</td><td>VIPeR</td><td>Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</td><td>Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</td><td><a href="https://pdfs.semanticscholar.org/7847/b1fbccadb780b655e72c66d3f9e93ddb880c.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=evaluating appearance models for recognition, reacquisition, and tracking&sort=relevance" target="_blank">[s2]</a></td><td></td><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td></tr><tr><td>voc</td><td>VOC</td><td>The PASCAL Visual Object Classes (VOC) Challenge</td><td>The Pascal Visual Object Classes (VOC) Challenge</td><td><a href="http://eprints.pascal-network.org/archive/00006187/01/PascalVOC_IJCV2009.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the pascal visual object classes (voc) challenge&sort=relevance" target="_blank">[s2]</a></td><td></td><td>0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a</td></tr><tr><td>vqa</td><td>VQA</td><td>VQA: Visual Question Answering</td><td>VQA: Visual Question Answering</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vqa: visual question answering&sort=relevance" target="_blank">[s2]</a></td><td></td><td>01959ef569f74c286956024866c1d107099199f7</td></tr><tr><td>wider</td><td>WIDER</td><td>Recognize Complex Events from Static Images by Fusing Deep Channels</td><td>Recognize complex events from static images by fusing deep channels</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognize complex events from static images by fusing deep channels&sort=relevance" target="_blank">[s2]</a></td><td></td><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td></tr><tr><td>wider_attribute</td><td>WIDER Attribute</td><td>Human Attribute Recognition by Deep Hierarchical Contexts</td><td>Human Attribute Recognition by Deep Hierarchical Contexts</td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=human attribute recognition by deep hierarchical contexts&sort=relevance" target="_blank">[s2]</a></td><td></td><td>44d23df380af207f5ac5b41459c722c87283e1eb</td></tr><tr><td>wider_face</td><td>WIDER FACE</td><td>WIDER FACE: A Face Detection Benchmark</td><td>WIDER FACE: A Face Detection Benchmark</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wider face: a face detection benchmark&sort=relevance" target="_blank">[s2]</a></td><td></td><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td></tr><tr><td>wildtrack</td><td>WildTrack</td><td>WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</td><td>WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</td><td><a href="http://openaccess.thecvf.com/content_cvpr_2018/Supplemental/1562-supp.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wildtrack: a multi-camera hd dataset for dense unscripted pedestrian detection&sort=relevance" target="_blank">[s2]</a></td><td></td><td>36bccfb2ad847096bc76777e544f305813cd8f5b</td></tr><tr><td>wlfdb</td><td>WLFDB</td><td>WLFDB: Weakly Labeled Face Databases</td><td>WLFDB : Weakly Labeled Face Databases</td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wlfdb: weakly labeled face databases&sort=relevance" target="_blank">[s2]</a></td><td></td><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td></tr><tr><td>yale_faces</td><td>YaleFaces</td><td>From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</td><td>From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</td><td><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.147.1487&rep=rep1&type=pdf" target="_blank">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from few to many: illumination cone models for face recognition under variable lighting and pose&sort=relevance" target="_blank">[s2]</a></td><td></td><td>18c72175ddbb7d5956d180b65a96005c100f6014</td></tr><tr><td>yale_faces</td><td>YaleFaces</td><td>Acquiring Linear Subspaces for Face Recognition under Variable Lighting</td><td>Acquiring linear subspaces for face recognition under variable lighting</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=acquiring linear subspaces for face recognition under variable lighting&sort=relevance" target="_blank">[s2]</a></td><td></td><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td></tr><tr><td>yawdd</td><td>YawDD</td><td>YawDD: A Yawning Detection Dataset</td><td>YawDD: a yawning detection dataset</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=yawdd: a yawning detection dataset&sort=relevance" target="_blank">[s2]</a></td><td></td><td>a94cae786d515d3450d48267e12ca954aab791c4</td></tr><tr><td>yfcc_100m</td><td>YFCC100M</td><td>YFCC100M: The New Data in Multimedia Research</td><td>YFCC100M: the new data in multimedia research</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=yfcc100m: the new data in multimedia research&sort=relevance" target="_blank">[s2]</a></td><td></td><td>010f0f4929e6a6644fb01f0e43820f91d0fad292</td></tr><tr><td>york_3d</td><td>UOY 3D Face Database</td><td>Three-Dimensional Face Recognition: An Eigensurface Approach</td><td>Three-dimensional face recognition: an eigensurface approach</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=three-dimensional face recognition: an eigensurface approach&sort=relevance" target="_blank">[s2]</a></td><td></td><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td></tr><tr><td>youtube_faces</td><td>YouTubeFaces</td><td>Face Recognition in Unconstrained Videos with Matched Background Similarity</td><td>Face recognition in unconstrained videos with matched background similarity</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face recognition in unconstrained videos with matched background similarity&sort=relevance" target="_blank">[s2]</a></td><td></td><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td></tr><tr><td>youtube_poses</td><td>YouTube Pose</td><td>Personalizing Human Video Pose Estimation</td><td>Personalizing Human Video Pose Estimation</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=personalizing human video pose estimation&sort=relevance" target="_blank">[s2]</a></td><td></td><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td></tr></table></body></html> \ No newline at end of file