summaryrefslogtreecommitdiff
path: root/megapixels
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels')
-rw-r--r--megapixels/app/models/bbox.py14
-rw-r--r--megapixels/app/models/dataset.py14
-rw-r--r--megapixels/app/site/parser.py30
-rw-r--r--megapixels/app/utils/draw_utils.py42
-rw-r--r--megapixels/app/utils/im_utils.py14
-rw-r--r--megapixels/commands/datasets/megaface_age_from_orig.py62
-rw-r--r--megapixels/commands/demo/face_search.py2
-rw-r--r--megapixels/commands/processor/_old_files_to_face_rois.py2
-rw-r--r--megapixels/commands/processor/face_roi_from_annos.py187
-rw-r--r--megapixels/commands/processor/file_record.py (renamed from megapixels/commands/datasets/file_record.py)2
-rw-r--r--megapixels/commands/site/age_gender_to_site.py100
11 files changed, 451 insertions, 18 deletions
diff --git a/megapixels/app/models/bbox.py b/megapixels/app/models/bbox.py
index 8ecc8971..c840ea1b 100644
--- a/megapixels/app/models/bbox.py
+++ b/megapixels/app/models/bbox.py
@@ -207,11 +207,21 @@ class BBox:
# -----------------------------------------------------------------
# Convert to
- def to_square(self, bounds):
+ def to_square(self):
'''Forces bbox to square dimensions
- :param bounds: (int, int) w, h of the image
:returns (BBox) in square ratio
'''
+ if self._width > self._height:
+ delta = (self._width - self._height) / 2
+ self._y1 -= delta
+ self._y2 += delta
+ elif self._height > self._width:
+ delta = (self._height - self._width) / 2
+ self._x1 -= delta
+ self._x2 += delta
+ return BBox(self._x1, self._y1, self._x2, self._y2)
+
+
def to_dim(self, dim):
"""scale is (w, h) is tuple of dimensions"""
diff --git a/megapixels/app/models/dataset.py b/megapixels/app/models/dataset.py
index a7227a70..c908da1b 100644
--- a/megapixels/app/models/dataset.py
+++ b/megapixels/app/models/dataset.py
@@ -152,6 +152,8 @@ class Dataset:
image_records = [] # list of image matches w/identity if available
# find most similar feature vectors indexes
#match_idxs = self.similar(query_vec, n_results, threshold)
+
+ # TODO: add cosine similarity
sim_scores = np.linalg.norm(np.array([query_vec]) - np.array(self._face_vectors), axis=1)
match_idxs = np.argpartition(sim_scores, range(n_results))[:n_results]
@@ -180,7 +182,17 @@ class Dataset:
s3_url = self.data_store_s3.face(ds_record.uuid)
bbox_norm = BBox.from_xywh_norm_dim(ds_roi.x, ds_roi.y, ds_roi.w, ds_roi.h, dim)
self.log.debug(f'bbox_norm: {bbox_norm}')
- score = sim_scores[match_idx]
+ self.log.debug(f'match_idx: {match_idx}, record_idx: {record_idx}, roi_index: {roi_index}, len sim_scores: {len(sim_scores)}')
+ try:
+ score = sim_scores[match_idx]
+ except Exception as e:
+ self.log.error(e)
+ try:
+ score = sim_scores[record_idx]
+ except Exception as e:
+ self.log.error(e)
+
+
if types.Metadata.IDENTITY in self._metadata.keys():
ds_id = df_identity.loc[df_identity['identity_key'] == ds_record.identity_key].iloc[0]
diff --git a/megapixels/app/site/parser.py b/megapixels/app/site/parser.py
index 3700efd1..6ab8c700 100644
--- a/megapixels/app/site/parser.py
+++ b/megapixels/app/site/parser.py
@@ -163,6 +163,35 @@ def intro_section(metadata, s3_path):
"""
section = "<section class='intro_section' style='background-image: url({})'>".format(s3_path + metadata['image'])
+ # section += "<div class='inner'>"
+
+ # parts = []
+ # if 'desc' in metadata:
+ # desc = metadata['desc']
+ # # colorize the first instance of the database name in the header
+ # if 'color' in metadata and metadata['title'] in desc:
+ # desc = desc.replace(metadata['title'], "<span style='color: {}'>{}</span>".format(metadata['color'], metadata['title']), 1)
+ # section += "<div class='hero_desc'><span class='bgpad'>{}</span></div>".format(desc, desc)
+
+ # if 'subdesc' in metadata:
+ # subdesc = markdown(metadata['subdesc']).replace('<p>', '').replace('</p>', '')
+ # section += "<div class='hero_subdesc'><span class='bgpad'>{}</span></div>".format(subdesc, subdesc)
+
+ # section += "</div>"
+ section += "</section>"
+
+ if 'caption' in metadata:
+ section += "<section><div class='image'><div class='intro-caption caption'>{}</div></div></section>".format(metadata['caption'])
+
+ return section
+
+
+def intro_section_v1(metadata, s3_path):
+ """
+ Build the intro section for datasets
+ """
+
+ section = "<section class='intro_section' style='background-image: url({})'>".format(s3_path + metadata['image'])
section += "<div class='inner'>"
parts = []
@@ -185,7 +214,6 @@ def intro_section(metadata, s3_path):
return section
-
def fix_images(lines, s3_path):
"""
do our own transformation of the markdown around images to handle wide images etc
diff --git a/megapixels/app/utils/draw_utils.py b/megapixels/app/utils/draw_utils.py
index 7044a62f..1836768b 100644
--- a/megapixels/app/utils/draw_utils.py
+++ b/megapixels/app/utils/draw_utils.py
@@ -3,8 +3,10 @@ from math import sqrt
import numpy as np
import cv2 as cv
+import PIL
+from PIL import ImageDraw
-from app.utils import logger_utils
+from app.utils import logger_utils, im_utils
log = logger_utils.Logger.getLogger()
@@ -118,6 +120,22 @@ def draw_landmarks2D(im, points_norm, radius=3, color=(0,255,0)):
cv.circle(im_dst, pt, radius, color, -1, cv.LINE_AA)
return im_dst
+def draw_landmarks2D_pil(im, points_norm, radius=3, color=(0,255,0)):
+ '''Draws facial landmarks, either 5pt or 68pt
+ '''
+ im_pil = im_utils.ensure_pil(im_utils.bgr2rgb(im))
+ draw = ImageDraw.Draw(im_pil)
+ dim = im.shape[:2][::-1]
+ for x,y in points_norm:
+ x1, y1 = (int(x*dim[0]), int(y*dim[1]))
+ xyxy = (x1, y1, x1+radius, y1+radius)
+ draw.ellipse(xyxy, fill='white')
+ del draw
+ im_dst = im_utils.ensure_np(im_pil)
+ im_dst = im_utils.rgb2bgr(im_dst)
+ return im_dst
+
+
def draw_landmarks3D(im, points, radius=3, color=(0,255,0)):
'''Draws 3D facial landmarks
'''
@@ -126,12 +144,26 @@ def draw_landmarks3D(im, points, radius=3, color=(0,255,0)):
cv.circle(im_dst, (x,y), radius, color, -1, cv.LINE_AA)
return im_dst
-def draw_bbox(im, bbox_norm, color=(0,255,0), stroke_weight=2):
+def draw_bbox(im, bboxes_norm, color=(0,255,0), stroke_weight=2):
'''Draws BBox onto cv image
+ :param color: RGB value
'''
- im_dst = im.copy()
- bbox_dim = bbox_norm.to_dim(im.shape[:2][::-1])
- cv.rectangle(im_dst, bbox_dim.pt_tl, bbox_dim.pt_br, color, stroke_weight, cv.LINE_AA)
+ #im_dst = im.copy()
+ if not type(bboxes_norm) == list:
+ bboxes_norm = [bboxes_norm]
+
+ im_pil = im_utils.ensure_pil(im_utils.bgr2rgb(im))
+ im_pil_draw = ImageDraw.ImageDraw(im_pil)
+
+ for bbox_norm in bboxes_norm:
+ bbox_dim = bbox_norm.to_dim(im.shape[:2][::-1])
+ #cv.rectangle(im_dst, bbox_dim.pt_tl, bbox_dim.pt_br, color, stroke_weight, cv.LINE_AA)
+ xyxy = (bbox_dim.pt_tl, bbox_dim.pt_br)
+ im_pil_draw.rectangle(xyxy, outline=color, width=stroke_weight)
+ # draw.rectangle([x1, y1, x2, y2], outline=, width=3)
+ im_dst = im_utils.ensure_np(im_pil)
+ im_dst = im_utils.rgb2bgr(im_dst)
+ del im_pil_draw
return im_dst
def draw_pose(im, pt_nose, image_pts):
diff --git a/megapixels/app/utils/im_utils.py b/megapixels/app/utils/im_utils.py
index d36c1c32..670d5168 100644
--- a/megapixels/app/utils/im_utils.py
+++ b/megapixels/app/utils/im_utils.py
@@ -11,11 +11,6 @@ from skimage import feature
import imutils
import time
import numpy as np
-import torch
-import torch.nn as nn
-import torchvision.models as models
-import torchvision.transforms as transforms
-from torch.autograd import Variable
from sklearn.metrics.pairwise import cosine_similarity
import datetime
@@ -293,6 +288,13 @@ def bgr2rgb(im):
"""
return cv.cvtColor(im,cv.COLOR_BGR2RGB)
+def rgb2bgr(im):
+ """Wrapper for cv2.cvtColor transform
+ :param im: Numpy.ndarray (BGR)
+ :returns: Numpy.ndarray (RGB)
+ """
+ return cv.cvtColor(im,cv.COLOR_RGB2BGR)
+
def compute_laplacian(im):
# below 100 is usually blurry
return cv.Laplacian(im, cv.CV_64F).var()
@@ -329,7 +331,7 @@ def normalizedGraylevelVariance(img):
s = stdev[0]**2 / mean[0]
return s[0]
-def compute_if_blank(im,width=100,sigma=0,thresh_canny=.1,thresh_mean=4,mask=None):
+def is_blank(im,width=100,sigma=0,thresh_canny=.1,thresh_mean=4,mask=None):
# im is graysacale np
#im = imutils.resize(im,width=width)
#mask = imutils.resize(mask,width=width)
diff --git a/megapixels/commands/datasets/megaface_age_from_orig.py b/megapixels/commands/datasets/megaface_age_from_orig.py
new file mode 100644
index 00000000..489bebf3
--- /dev/null
+++ b/megapixels/commands/datasets/megaface_age_from_orig.py
@@ -0,0 +1,62 @@
+import click
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', required=True,
+ help='Input path to metadata directory')
+@click.option('-o', '--output', 'opt_fp_out',
+ help='Output path to age CSV')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out):
+ """Creates CSV of MegaFace ages from original BBoxes"""
+
+ import os
+ from os.path import join
+ from pathlib import Path
+ from glob import glob
+
+ import dlib
+ import pandas as pd
+ from tqdm import tqdm
+
+ from app.settings import types
+ from app.utils import click_utils
+ from app.settings import app_cfg
+
+ from PIL import Image, ImageOps, ImageFilter
+ from app.utils import file_utils, im_utils, logger_utils
+
+ log = logger_utils.Logger.getLogger()
+
+ # -------------------------------------------------
+ # process
+ fp_im_dirs = glob(join(opt_fp_in, '**/'), recursive=True)
+
+ log.info('Found {} directories'.format(len(fp_im_dirs)))
+
+ identities = {}
+
+ for fp_im_dir in tqdm(fp_im_dirs):
+ # 1234567@N05_identity_1
+ try:
+ dir_id_name = Path(fp_im_dir).name
+ nsid = dir_id_name.split('_')[0]
+ identity_num = dir_id_name.split('_')[2]
+ id_key = '{}_{}'.format(nsid, identity_num)
+ num_images = len(glob(join(fp_im_dir, '*.jpg')))
+ if not id_key in identities.keys():
+ identities[id_key] = {'nsid': nsid, 'identity': identity_num, 'images': num_images}
+ else:
+ identities[id_key]['images'] += num_images
+ except Exception as e:
+ continue
+
+ # convert to dict
+ identities_list = [v for k, v in identities.items()]
+ df = pd.DataFrame.from_dict(identities_list)
+
+ file_utils.mkdirs(opt_fp_out)
+
+ log.info('Wrote {} lines to {}'.format(len(df), opt_fp_out))
+ df.to_csv(opt_fp_out, index=False)
+
+
diff --git a/megapixels/commands/demo/face_search.py b/megapixels/commands/demo/face_search.py
index 4c7036f4..5218d501 100644
--- a/megapixels/commands/demo/face_search.py
+++ b/megapixels/commands/demo/face_search.py
@@ -10,7 +10,7 @@ log = Logger.getLogger()
@click.command()
@click.option('-i', '--input', 'opt_fp_in', required=True,
- help='File to lookup')
+ help='Face image file to lookup')
@click.option('--data_store', 'opt_data_store',
type=cfg.DataStoreVar,
default=click_utils.get_default(types.DataStore.HDD),
diff --git a/megapixels/commands/processor/_old_files_to_face_rois.py b/megapixels/commands/processor/_old_files_to_face_rois.py
index 895f4718..d92cbd74 100644
--- a/megapixels/commands/processor/_old_files_to_face_rois.py
+++ b/megapixels/commands/processor/_old_files_to_face_rois.py
@@ -1,4 +1,4 @@
- """
+"""
Crop images to prepare for training
"""
diff --git a/megapixels/commands/processor/face_roi_from_annos.py b/megapixels/commands/processor/face_roi_from_annos.py
new file mode 100644
index 00000000..fc933049
--- /dev/null
+++ b/megapixels/commands/processor/face_roi_from_annos.py
@@ -0,0 +1,187 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+color_filters = {'color': 1, 'gray': 2, 'all': 3}
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None,
+ help='Override enum input filename CSV')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.HDD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(480, 480),
+ help='Output image size')
+@click.option('-d', '--detector', 'opt_detector_type',
+ type=cfg.FaceDetectNetVar,
+ default=click_utils.get_default(types.FaceDetectNet.CVDNN),
+ help=click_utils.show_help(types.FaceDetectNet))
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('--conf', 'opt_conf_thresh', default=0.85, type=click.FloatRange(0,1),
+ help='Confidence minimum threshold')
+@click.option('-p', '--pyramids', 'opt_pyramids', default=0, type=click.IntRange(0,4),
+ help='Number pyramids to upscale for DLIB detectors')
+@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
+ help='Slice list of files')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('--color', 'opt_color_filter',
+ type=click.Choice(color_filters.keys()), default='color',
+ help='Filter to keep color or grayscale images (color = keep color')
+@click.option('--keep', 'opt_largest', type=click.Choice(['largest', 'all']), default='largest',
+ help='Only keep largest face')
+@click.option('--zone', 'opt_zone', default=(0.0, 0.0), type=(float, float),
+ help='Face center must be located within zone region (0.5 = half width/height)')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset, opt_size, opt_detector_type,
+ opt_gpu, opt_conf_thresh, opt_pyramids, opt_slice, opt_display, opt_force, opt_color_filter,
+ opt_largest, opt_zone):
+ """Converts frames with faces to CSV of ROIs"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ from glob import glob
+
+ from tqdm import tqdm
+ import numpy as np
+ import dlib # must keep a local reference for dlib
+ import cv2 as cv
+ import pandas as pd
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.processors import face_detector
+ from app.models.data_store import DataStore
+
+ # -------------------------------------------------
+ # init here
+
+ log = logger_utils.Logger.getLogger()
+
+ # set data_store
+ data_store = DataStore(opt_data_store, opt_dataset)
+
+ # get filepath out
+ fp_out = data_store.metadata(types.Metadata.FACE_ROI) if opt_fp_out is None else opt_fp_out
+ if not opt_force and Path(fp_out).exists():
+ log.error('File exists. Use "-f / --force" to overwite')
+ return
+
+ # set detector
+ if opt_detector_type == types.FaceDetectNet.CVDNN:
+ detector = face_detector.DetectorCVDNN()
+ elif opt_detector_type == types.FaceDetectNet.DLIB_CNN:
+ detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu)
+ elif opt_detector_type == types.FaceDetectNet.DLIB_HOG:
+ detector = face_detector.DetectorDLIBHOG()
+ elif opt_detector_type == types.FaceDetectNet.MTCNN_TF:
+ detector = face_detector.DetectorMTCNN_TF(gpu=opt_gpu)
+ elif opt_detector_type == types.FaceDetectNet.HAAR:
+ log.error('{} not yet implemented'.format(opt_detector_type.name))
+ return
+
+
+ # get list of files to process
+ fp_record = data_store.metadata(types.Metadata.FILE_RECORD) if opt_fp_in is None else opt_fp_in
+ df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index')
+ if opt_slice:
+ df_record = df_record[opt_slice[0]:opt_slice[1]]
+ log.debug('processing {:,} files'.format(len(df_record)))
+
+ # filter out grayscale
+ color_filter = color_filters[opt_color_filter]
+ # set largest flag, to keep all or only largest
+ opt_largest = (opt_largest == 'largest')
+
+ data = []
+ skipped_files = []
+ processed_files = []
+
+ for df_record in tqdm(df_record.itertuples(), total=len(df_record)):
+ fp_im = data_store.face(str(df_record.subdir), str(df_record.fn), str(df_record.ext))
+ try:
+ im = cv.imread(fp_im)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+ except Exception as e:
+ log.debug(f'could not read: {fp_im}')
+ return
+ # filter out color or grayscale iamges
+ if color_filter != color_filters['all']:
+ try:
+ is_gray = im_utils.is_grayscale(im)
+ if is_gray and color_filter != color_filters['gray']:
+ log.debug('Skipping grayscale image: {}'.format(fp_im))
+ continue
+ except Exception as e:
+ log.error('Could not check grayscale: {}'.format(fp_im))
+ continue
+
+ try:
+ bboxes_norm = detector.detect(im_resized, pyramids=opt_pyramids, largest=opt_largest,
+ zone=opt_zone, conf_thresh=opt_conf_thresh)
+ except Exception as e:
+ log.error('could not detect: {}'.format(fp_im))
+ log.error('{}'.format(e))
+ continue
+
+ if len(bboxes_norm) == 0:
+ skipped_files.append(fp_im)
+ log.warn(f'no faces in: {fp_im}')
+ log.warn(f'skipped: {len(skipped_files)}. found:{len(processed_files)} files')
+ else:
+ processed_files.append(fp_im)
+ for bbox in bboxes_norm:
+ roi = {
+ 'record_index': int(df_record.Index),
+ 'x': bbox.x,
+ 'y': bbox.y,
+ 'w': bbox.w,
+ 'h': bbox.h
+ }
+ data.append(roi)
+
+ # if display optined
+ if opt_display and len(bboxes_norm):
+ # draw each box
+ for bbox_norm in bboxes_norm:
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if dim[0] > 1000:
+ im_resized = im_utils.resize(im_resized, width=1000)
+ im_resized = draw_utils.draw_bbox(im_resized, bbox_norm)
+
+ # display and wait
+ cv.imshow('', im_resized)
+ display_utils.handle_keyboard()
+
+ # create DataFrame and save to CSV
+ file_utils.mkdirs(fp_out)
+ df = pd.DataFrame.from_dict(data)
+ df.index.name = 'index'
+ df.to_csv(fp_out)
+
+ # save script
+ file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out)) \ No newline at end of file
diff --git a/megapixels/commands/datasets/file_record.py b/megapixels/commands/processor/file_record.py
index 41a5df28..6403c768 100644
--- a/megapixels/commands/datasets/file_record.py
+++ b/megapixels/commands/processor/file_record.py
@@ -78,7 +78,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media,
fp_out = data_store.metadata(types.Metadata.FILE_RECORD) if opt_fp_out is None else opt_fp_out
# exit if exists
if not opt_force and Path(fp_out).exists():
- log.error('File exists. Use "-f / --force" to overwite')
+ log.error(f'File {fp_out} exists. Use "-f / --force" to overwite')
return
# ----------------------------------------------------------------
diff --git a/megapixels/commands/site/age_gender_to_site.py b/megapixels/commands/site/age_gender_to_site.py
new file mode 100644
index 00000000..3ad24a8d
--- /dev/null
+++ b/megapixels/commands/site/age_gender_to_site.py
@@ -0,0 +1,100 @@
+"""
+
+"""
+
+import click
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None,
+ help='Override enum input filename CSV')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.HDD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_force):
+ """Converts age/gender to CSV for pie chartgs"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ from glob import glob
+
+ from tqdm import tqdm
+ import numpy as np
+ import cv2 as cv
+ import pandas as pd
+
+ from app.utils import logger_utils
+ from app.models.data_store import DataStore
+
+ # -------------------------------------------------------------------------
+ # init here
+
+ log = logger_utils.Logger.getLogger()
+
+ # init filepaths
+ data_store = DataStore(opt_data_store, opt_dataset)
+ # set file output path
+ metadata_type = types.Metadata.FACE_ATTRIBUTES
+ fp_in = data_store.metadata(metadata_type) if opt_fp_out is None else opt_fp_in
+ dk = opt_dataset.name.lower()
+ log.debug(f'dk: {dk}')
+ fp_out_age = f'../site/content/pages/datasets/{dk}/assets/age.csv'
+ fp_out_gender = f'../site/content/pages/datasets/{dk}/assets/gender.csv'
+
+ if not opt_force and (Path(fp_out_age).exists() or Path(fp_out_gender).exists()):
+ log.error('File exists. Use "-f / --force" to overwite')
+ return
+
+ # -------------------------------------------------------------------------
+ # Age
+
+ df = pd.read_csv(fp_in)
+
+ results = []
+ brackets = [(0, 12), (13, 18), (19,24), (25, 34), (35, 44), (45, 54), (55, 64), (64, 75), (75, 100)]
+ df_age = df['age_real']
+
+ for a1, a2 in brackets:
+ n = len(df_age.loc[((df_age >= a1) & (df_age <= a2))])
+ results.append({'age': f'{a1} - {a2}', 'faces': n})
+
+ df_out = pd.DataFrame.from_dict(results)
+ df_out = df_out[['age','faces']]
+ df_out.to_csv(fp_out_age, index=False)
+
+ # Gender
+ results = []
+
+ df_f = df['f']
+ nm = len(df_f.loc[((df_f < 0.33))])
+ nnb = len(df_f.loc[((df_f >= 0.33) & (df_f <= 0.66))])
+ nf = len(df_f.loc[((df_f > 0.66))])
+
+ results = []
+ results.append({'gender': 'Male', 'faces':nm})
+ results.append({'gender': 'Female', 'faces': nf})
+ results.append({'gender': 'They', 'faces': nnb})
+
+ df_out = pd.DataFrame.from_dict(results)
+ df_out = df_out[['gender','faces']]
+ df_out.to_csv(fp_out_gender, index=False) \ No newline at end of file