summaryrefslogtreecommitdiff
path: root/megapixels/notebooks/datasets/vgg_face2/identity.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/notebooks/datasets/vgg_face2/identity.ipynb')
-rw-r--r--megapixels/notebooks/datasets/vgg_face2/identity.ipynb439
1 files changed, 439 insertions, 0 deletions
diff --git a/megapixels/notebooks/datasets/vgg_face2/identity.ipynb b/megapixels/notebooks/datasets/vgg_face2/identity.ipynb
new file mode 100644
index 00000000..66eeeb90
--- /dev/null
+++ b/megapixels/notebooks/datasets/vgg_face2/identity.ipynb
@@ -0,0 +1,439 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# UMD Faces Knowledge Graph Identities\n",
+ "\n",
+ "- convert filename-names to names\n",
+ "- fetch Google Knowledge Graph entity IDs for each name\n",
+ "- save KG IDs to CSV"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%reload_ext autoreload\n",
+ "%autoreload 2\n",
+ "\n",
+ "import os\n",
+ "import os.path as osp\n",
+ "from os.path import join\n",
+ "from glob import glob\n",
+ "import random\n",
+ "import math\n",
+ "from datetime import datetime\n",
+ "import requests\n",
+ "import json\n",
+ "import time\n",
+ "from pprint import pprint\n",
+ "from multiprocessing.pool import ThreadPool\n",
+ "import threading\n",
+ "import urllib.request\n",
+ "\n",
+ "from tqdm import tqdm_notebook as tqdm\n",
+ "import pandas as pd\n",
+ "from scipy.io import loadmat\n",
+ "import numpy as np\n",
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Load IMDB Metadata"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "fp_filenames = '/data_store_hdd/datasets/people/umd_faces/downloads/filenames.txt'\n",
+ "with open(fp_filenames, 'r') as fp:\n",
+ " filenames = fp.readlines()\n",
+ "_ = filenames.pop(0)\n",
+ "filenames = [x.replace('_', ' ').strip() for x in filenames]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "aaron rodgers\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(filenames[0])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Google Knowledge Graph API"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# read API key\n",
+ "api_key = open('/work/megapixels_dev/3rdparty/knowledge-graph-api/.api_key').read()\n",
+ "url_kg_api = 'https://kgsearch.googleapis.com/v1/entities:search'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def _get_kg_meta(result_obj, params):\n",
+ " global api_key, url_kg_api\n",
+ " \n",
+ " params['indent'] = True\n",
+ " params['key'] = api_key\n",
+ " params['limit'] = 1\n",
+ " \n",
+ " url = f'{url_kg_api}?{urllib.parse.urlencode(params)}'\n",
+ " try:\n",
+ " json_response = urllib.request.urlopen(url).read()\n",
+ " except Exception as e:\n",
+ " result['error'] = str(e)\n",
+ " else:\n",
+ " try:\n",
+ " response = json.loads(json_response)\n",
+ " items = response.get('itemListElement', [])\n",
+ " result_obj['accessed'] = True\n",
+ " if items:\n",
+ " item = items[0]\n",
+ " item_result = item.get('result', [])\n",
+ " result_obj['description'] = item_result.get('description', '')\n",
+ " det_desc = item_result.get('detailedDescription', '')\n",
+ " if not result_obj['kg_id']:\n",
+ " result_obj['kg_id'] = item_result.get('@id', '').replace('kg:','')\n",
+ " if det_desc:\n",
+ " result_obj['description_extended'] = det_desc.get('articleBody','')\n",
+ " result_obj['description_license'] = det_desc.get('license','')\n",
+ " result_obj['description_url'] = det_desc.get('url','')\n",
+ " else:\n",
+ " result_obj['description_extended'] = ''\n",
+ " result_obj['description_license'] = ''\n",
+ " result_obj['description_url'] = ''\n",
+ " result_img = item_result.get('image', '')\n",
+ " if result_img:\n",
+ " result_obj['image_url'] = result_img.get('contentUrl', '')\n",
+ " result_obj['name'] = item_result.get('name', '')\n",
+ " result_obj['score'] = item.get('resultScore', 0.0)\n",
+ " result_obj['url'] = item_result.get('url', '')\n",
+ " except Exception as e:\n",
+ " result_obj['error'] = str(e)\n",
+ " return result_obj\n",
+ " \n",
+ "def get_kg_from_name(obj):\n",
+ " if obj['accessed']:\n",
+ " return obj\n",
+ " params = {'query': obj['query']}\n",
+ " return _get_kg_meta(obj, params)\n",
+ " \n",
+ "def get_kg_from_kg_id(obj):\n",
+ " if obj['accessed']:\n",
+ " return obj\n",
+ " params = {'ids': obj['kg_id']}\n",
+ " return _get_kg_meta(obj, params)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{'accessed': True,\n",
+ " 'description': 'American singer',\n",
+ " 'description_extended': 'Taylor Alison Swift is an American '\n",
+ " \"singer-songwriter. As one of the world's leading \"\n",
+ " 'contemporary recording artists, she is known for '\n",
+ " 'narrative songs about her personal life, which has '\n",
+ " 'received widespread media coverage.\\n',\n",
+ " 'description_license': 'https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License',\n",
+ " 'description_url': 'https://en.wikipedia.org/wiki/Taylor_Swift',\n",
+ " 'image_url': 'http://t0.gstatic.com/images?q=tbn:ANd9GcST848UJ0u31E6aoQfb2nnKZFyad7rwNF0ZLOCACGpu4jnboEzV',\n",
+ " 'kg_id': '/m/0dl567',\n",
+ " 'name': 'Taylor Swift',\n",
+ " 'query': 'Taylor Swift',\n",
+ " 'score': 1241.476318,\n",
+ " 'url': 'http://taylorswift.com/'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "# test get from name\n",
+ "obj = {'query': 'Taylor Swift', 'kg_id': '', 'score': 0.0, 'description': '', 'url':'', 'accessed': False} # default\n",
+ "result = get_kg_from_name(obj)\n",
+ "pprint(obj)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# define thread mapping function\n",
+ "def pool_map_persons(obj):\n",
+ " global pbar\n",
+ " pbar.update(1)\n",
+ " kg_obj = get_kg_from_name(obj)\n",
+ " return kg_obj"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# build mapped_person objects\n",
+ "mapped_persons = []\n",
+ "for fn in filenames:\n",
+ " obj = {'query': fn, 'kg_id': '', 'score': 0.0, 'description': '', 'url':'', 'accessed': False}\n",
+ " mapped_persons.append(obj)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "3107\n",
+ "['aaron rodgers', 'aaron ruell', 'aaron staton', 'abel ferrara', 'abigail klein', 'abraham benrubi', 'abyshamble', 'adabel guerrero', 'adam ant', 'adam buxton']\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(len(mapped_persons))\n",
+ "print(filenames[0:10])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "4752a8e0280e4a58843a21401d9ed649",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "HBox(children=(IntProgress(value=0, max=3107), HTML(value='')))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1102/3107 remaining\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "882c60006b0d4a9e809297bbc1e86807",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "HBox(children=(IntProgress(value=0, max=3107), HTML(value='')))"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "num_threads = 20\n",
+ "pbar = tqdm(total=len(mapped_persons))\n",
+ "\n",
+ "num_non_accessed = sum(0 if x['accessed'] else 1 for x in mapped_persons)\n",
+ "\n",
+ "# convert to thread pool\n",
+ "while num_non_accessed > 0:\n",
+ " print(f'{num_non_accessed}/{len(mapped_persons)} remaining')\n",
+ " pool = ThreadPool(num_threads)\n",
+ "\n",
+ " # start threading\n",
+ " with tqdm(total=len(mapped_persons)) as pbar:\n",
+ " mapped_persons = pool.map(pool_map_persons, mapped_persons)\n",
+ "\n",
+ " # close tqdm\n",
+ " pbar.close()\n",
+ "\n",
+ " num_non_accessed = sum(0 if x['accessed'] else 1 for x in mapped_persons)\n",
+ " if num_non_accessed > 0:\n",
+ " print(f'{num_non_accessed} remaining. Sleeping...')\n",
+ " time.sleep(60*20) # wait X minutes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{'query': \"'Lee' George Quinones\", 'kg_id': '/m/08hvx1', 'score': 280.322754, 'description': 'Artist', 'url': 'http://www.leequinones.com/', 'accessed': True, 'description_extended': 'George Lee QuiƱones is a Puerto Rican artist and actor. He is one of several artists to gain fame from the New York City Subway graffiti movement.\\n', 'description_license': 'https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License', 'description_url': 'https://en.wikipedia.org/wiki/Lee_Qui%C3%B1ones', 'name': 'Lee QuiƱones'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "# test output for a person\n",
+ "print(mapped_persons[0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# reduce CC attribution string. the default strinf from Google Knowledge Graph is too verbose\n",
+ "cc_long = 'https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License'\n",
+ "cc_short = 'CC BY-SA 3.0'\n",
+ "nchanged = 0\n",
+ "for mapped_person in mapped_persons:\n",
+ " license = mapped_person.get('description_license', None)\n",
+ " if license == cc_long:\n",
+ " nchanged += 1\n",
+ " mapped_person['description_license'] = cc_short\n",
+ "print(nchanged)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# find number not accessed\n",
+ "n_empty = 0\n",
+ "for mapped_person in mapped_persons:\n",
+ " if not mapped_person.get('accessed', False):\n",
+ " n_empty += 1\n",
+ " print(mapped_person['kg_id'])\n",
+ "print(n_empty)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# create dataframe for mapped persons\n",
+ "df_mapped_persons = pd.DataFrame.from_dict(mapped_persons)\n",
+ "df_mapped_persons.index.name = 'index'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# check output\n",
+ "df_mapped_persons.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# save\n",
+ "fp_out = '/data_store_hdd/datasets/people/imdb_wiki/metadata/identity_kg.csv'\n",
+ "df_mapped_persons.to_csv(fp_out, encoding = 'utf-16')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# create small version\n",
+ "limit = 1000\n",
+ "fpp_out = Path(fp_out)\n",
+ "fp_out_sm = join(fpp_out.parent, f'{fpp_out.stem}_0_{limit}.csv')\n",
+ "df_mapped_persons_sm = pd.DataFrame.from_dict(mapped_persons[0:limit])\n",
+ "df_mapped_persons_sm.index.name = 'index'\n",
+ "df_mapped_persons_sm.to_csv(fp_out_sm, encoding = 'utf-16')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# for later, check similarity score to othyer identity kg CSVs\n",
+ "from difflib import SequenceMatcher\n",
+ "def similar(a, b):\n",
+ " return SequenceMatcher(None, a, b).ratio()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python [conda env:megapixels]",
+ "language": "python",
+ "name": "conda-env-megapixels-py"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}