summaryrefslogtreecommitdiff
path: root/megapixels/notebooks/_local_scratch.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/notebooks/_local_scratch.ipynb')
-rw-r--r--megapixels/notebooks/_local_scratch.ipynb196
1 files changed, 104 insertions, 92 deletions
diff --git a/megapixels/notebooks/_local_scratch.ipynb b/megapixels/notebooks/_local_scratch.ipynb
index 167b6ddd..cee17cba 100644
--- a/megapixels/notebooks/_local_scratch.ipynb
+++ b/megapixels/notebooks/_local_scratch.ipynb
@@ -1,161 +1,173 @@
{
"cells": [
{
- "cell_type": "code",
- "execution_count": 1,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
"source": [
- "import pandas as pd\n",
- "import cv2 as cv\n",
- "import numpy as np\n",
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt"
+ "# Scratch pad"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
- "import sys\n",
"from glob import glob\n",
"from os.path import join\n",
"from pathlib import Path\n",
+ "import random\n",
+ "\n",
+ "import pandas as pd\n",
+ "import cv2 as cv\n",
+ "import numpy as np\n",
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "import sys\n",
"sys.path.append('/work/megapixels_dev/megapixels')\n",
"from app.models.bbox import BBox\n",
- "#from app.utils import im_utils\n",
- "import random"
+ "from app.utils import im_utils, file_utils"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
- "dir_ims = '/data_store_ssd/apps/megapixels/datasets/umd_faces/faces/'"
+ "a= [1]"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "0\n"
- ]
+ "data": {
+ "text/plain": [
+ "1"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "fp_ims = glob(join(dir_ims, '*.png'))\n",
- "print(len(fp_ims))"
+ "a[-1]"
]
},
{
"cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Help on function choice in module random:\n",
- "\n",
- "choice(self, seq)\n",
- " Choose a random element from a non-empty sequence.\n",
- "\n"
- ]
- }
- ],
- "source": [
- "help(random.sample)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[1, 8, 0, 6, 3] True\n"
- ]
- }
- ],
- "source": [
- "a = list(range(0,10))\n",
- "b = random.sample(a, 5)\n",
- "print(b, len(set(b))==5)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
+ "execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
- "from random import randint\n",
- "imu"
+ "fp_filepath = '/data_store_ssd/datasets/people/lfw/metadata/filepath.csv'\n",
+ "df_filepath = pd.read_csv(fp_filepath)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
- "import face_alignment\n",
- "from skimage import io\n",
- "\n",
- "fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, flip_input=False, device='cuda')"
+ "image_index = 12467"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 55,
"metadata": {},
- "outputs": [],
- "source": [
- "fp_im = np.random.choice(fp_ims)\n",
- "im = io.imread(fp_im)\n",
- "preds = fa.get_landmarks(im)\n",
- "print(preds[0])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "12474\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "index 12851\n",
+ "ext jpg\n",
+ "fn Vladimir_Putin_0029\n",
+ "subdir Vladimir_Putin\n",
+ "Name: 12474, dtype: object"
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "import json"
+ "image_index += 1\n",
+ "print(image_index)\n",
+ "df_filepath.iloc[image_index]"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
- "print(len(preds[0]))\n"
+ "import imutils"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 57,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Help on function build_montages in module imutils.convenience:\n",
+ "\n",
+ "build_montages(image_list, image_shape, montage_shape)\n",
+ " ---------------------------------------------------------------------------------------------\n",
+ " author: Kyle Hounslow\n",
+ " ---------------------------------------------------------------------------------------------\n",
+ " Converts a list of single images into a list of 'montage' images of specified rows and columns.\n",
+ " A new montage image is started once rows and columns of montage image is filled.\n",
+ " Empty space of incomplete montage images are filled with black pixels\n",
+ " ---------------------------------------------------------------------------------------------\n",
+ " :param image_list: python list of input images\n",
+ " :param image_shape: tuple, size each image will be resized to for display (width, height)\n",
+ " :param montage_shape: tuple, shape of image montage (width, height)\n",
+ " :return: list of montage images in numpy array format\n",
+ " ---------------------------------------------------------------------------------------------\n",
+ " \n",
+ " example usage:\n",
+ " \n",
+ " # load single image\n",
+ " img = cv2.imread('lena.jpg')\n",
+ " # duplicate image 25 times\n",
+ " num_imgs = 25\n",
+ " img_list = []\n",
+ " for i in xrange(num_imgs):\n",
+ " img_list.append(img)\n",
+ " # convert image list into a montage of 256x256 images tiled in a 5x5 montage\n",
+ " montages = make_montages_of_images(img_list, (256, 256), (5, 5))\n",
+ " # iterate through montages and display\n",
+ " for montage in montages:\n",
+ " cv2.imshow('montage image', montage)\n",
+ " cv2.waitKey(0)\n",
+ " \n",
+ " ----------------------------------------------------------------------------------------------\n",
+ "\n"
+ ]
+ }
+ ],
"source": [
- "with open('test.json', 'w') as fp:\n",
- " json.dump(preds[0].tolist(), fp)"
+ "help(imutils.build_montages)"
]
},
{
@@ -182,7 +194,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.5"
+ "version": "3.6.6"
}
},
"nbformat": 4,