summaryrefslogtreecommitdiff
path: root/megapixels/datasets/commands/face.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/datasets/commands/face.py')
-rw-r--r--megapixels/datasets/commands/face.py117
1 files changed, 117 insertions, 0 deletions
diff --git a/megapixels/datasets/commands/face.py b/megapixels/datasets/commands/face.py
new file mode 100644
index 00000000..6b7b18b7
--- /dev/null
+++ b/megapixels/datasets/commands/face.py
@@ -0,0 +1,117 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+@click.command()
+@click.option('-i', '--input', 'opt_dir_in', required=True,
+ help='Input directory')
+@click.option('-o', '--output', 'opt_fp_out', required=True,
+ help='Output CSV')
+@click.option('-e', '--ext', 'opt_ext',
+ default='jpg', type=click.Choice(['jpg', 'png']),
+ help='File glob ext')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('-t', '--detector-type', 'opt_detector_type',
+ type=cfg.FaceDetectNetVar,
+ default=click_utils.get_default(types.FaceDetectNet.DLIB_CNN),
+ help=click_utils.show_help(types.FaceDetectNet))
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('--conf', 'opt_conf_thresh', default=0.85, type=click.FloatRange(0,1),
+ help='Confidence minimum threshold')
+@click.option('--pyramids', 'opt_pyramids', default=0, type=click.IntRange(0,4),
+ help='Number pyramids to upscale for DLIB detectors')
+@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
+ help='Slice list of files')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_dir_in, opt_fp_out, opt_ext, opt_size, opt_detector_type,
+ opt_gpu, opt_conf_thresh, opt_pyramids, opt_slice, opt_display):
+ """Extrace face"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ from glob import glob
+ from tqdm import tqdm
+ import numpy as np
+ import dlib # must keep a local reference for dlib
+ import cv2 as cv
+ import pandas as pd
+
+ from app.utils import logger_utils, file_utils, im_utils
+ from app.processors import face_detector
+
+ # -------------------------------------------------
+ # init here
+
+ log = logger_utils.Logger.getLogger()
+
+ if opt_detector_type == types.FaceDetectNet.CVDNN:
+ detector = face_detector.DetectorCVDNN()
+ elif opt_detector_type == types.FaceDetectNet.DLIB_CNN:
+ detector = face_detector.DetectorDLIBCNN(opt_gpu)
+ elif opt_detector_type == types.FaceDetectNet.DLIB_HOG:
+ detector = face_detector.DetectorDLIBHOG()
+ elif opt_detector_type == types.FaceDetectNet.HAAR:
+ log.error('{} not yet implemented'.format(opt_detector_type.name))
+ return
+
+
+ # -------------------------------------------------
+ # process here
+
+ # get list of files to process
+ fp_ims = glob(join(opt_dir_in, '*.{}'.format(opt_ext)))
+ if opt_slice:
+ fp_ims = fp_ims[opt_slice[0]:opt_slice[1]]
+ log.debug('processing {:,} files'.format(len(fp_ims)))
+
+
+ data = []
+
+ for fp_im in tqdm(fp_ims):
+ im = cv.imread(fp_im)
+ bboxes = detector.detect(im, opt_size=opt_size, opt_pyramids=opt_pyramids)
+ fpp_im = Path(fp_im)
+ for bbox in bboxes:
+ roi = {
+ 'fn': fpp_im.stem,
+ 'ext': fpp_im.suffix,
+ 'x': bbox.x,
+ 'y': bbox.y,
+ 'w': bbox.w,
+ 'h': bbox.h}
+ dim = bbox.to_dim(im.shape[:2][::-1]) # w,h
+ data.append(roi)
+
+ # debug display
+ if opt_display and len(bboxes):
+ im_md = im_utils.resize(im, width=opt_size[0])
+ for bbox in bboxes:
+ dim = bbox.to_dim(im_md.shape[:2][::-1])
+ cv.rectangle(im_md, dim.pt_tl, dim.pt_br, (0,255,0), 3)
+ cv.imshow('', im_md)
+ while True:
+ k = cv.waitKey(1) & 0xFF
+ if k == 27 or k == ord('q'): # ESC
+ cv.destroyAllWindows()
+ sys.exit()
+ elif k != 255:
+ # any key to continue
+ break
+
+ # save date
+ df = pd.DataFrame.from_dict(data)
+ df.to_csv(opt_fp_out) \ No newline at end of file