summaryrefslogtreecommitdiff
path: root/megapixels/commands
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands')
-rw-r--r--megapixels/commands/cv/face_pose.py87
-rw-r--r--megapixels/commands/cv/face_pose_mt.py138
-rw-r--r--megapixels/commands/cv/face_roi.py21
-rw-r--r--megapixels/commands/cv/face_vector.py44
-rw-r--r--megapixels/commands/cv/face_vector_mt.py118
-rw-r--r--megapixels/commands/datasets/file_record.py (renamed from megapixels/commands/datasets/records.py)89
-rw-r--r--megapixels/commands/datasets/msceleb.py66
-rw-r--r--megapixels/commands/datasets/msceleb_names.py57
-rw-r--r--megapixels/commands/demo/face_search.py4
9 files changed, 524 insertions, 100 deletions
diff --git a/megapixels/commands/cv/face_pose.py b/megapixels/commands/cv/face_pose.py
index c37d006f..9979ad34 100644
--- a/megapixels/commands/cv/face_pose.py
+++ b/megapixels/commands/cv/face_pose.py
@@ -1,5 +1,9 @@
"""
Converts ROIs to pose: yaw, roll, pitch
+pitch: looking down or up in yes gesture
+roll: tilting head towards shoulder
+yaw: twisting head left to right in no gesture
+
"""
import click
@@ -17,7 +21,7 @@ from app.settings import app_cfg as cfg
help='Override enum media directory')
@click.option('--data_store', 'opt_data_store',
type=cfg.DataStoreVar,
- default=click_utils.get_default(types.DataStore.SSD),
+ default=click_utils.get_default(types.DataStore.HDD),
show_default=True,
help=click_utils.show_help(types.Dataset))
@click.option('--dataset', 'opt_dataset',
@@ -91,50 +95,57 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
# store poses and convert to DataFrame
poses = []
- # iterate
+ # iterate groups with file/record index as key
for record_index, df_img_group in tqdm(df_img_groups):
# make fp
ds_record = df_record.iloc[record_index]
fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
im = cv.imread(fp_im)
- # get bbox
- x = df_img_group.x.values[0]
- y = df_img_group.y.values[0]
- w = df_img_group.w.values[0]
- h = df_img_group.h.values[0]
- dim = im.shape[:2][::-1]
- bbox = BBox.from_xywh(x, y, w, h).to_dim(dim)
- # get pose
- landmarks = face_landmarks.landmarks(im, bbox)
- pose_data = face_pose.pose(landmarks, dim, project_points=opt_display)
- pose_degrees = pose_data['degrees'] # only keep the degrees data
-
- # use the project point data if display flag set
- if opt_display:
- pts_im = pose_data['points_image']
- pts_model = pose_data['points_model']
- pt_nose = pose_data['point_nose']
- dst = im.copy()
- face_pose.draw_pose(dst, pts_im, pts_model, pt_nose)
- face_pose.draw_degrees(dst, pose_degrees)
- # display to cv window
- cv.imshow('', dst)
- while True:
- k = cv.waitKey(1) & 0xFF
- if k == 27 or k == ord('q'): # ESC
- cv.destroyAllWindows()
- sys.exit()
- elif k != 255:
- # any key to continue
- break
-
- # add image index and append to result CSV data
- pose_degrees['record_index'] = record_index
- poses.append(pose_degrees)
+ # iterate image group dataframe with roi index as key
+ for roi_index, df_img in df_img_group.iterrows():
+ # get bbox
+ x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h
+ dim = (ds_record.width, ds_record.height)
+ #dim = im.shape[:2][::-1]
+ bbox = BBox.from_xywh(x, y, w, h).to_dim(dim)
+ # get pose
+ landmarks = face_landmarks.landmarks(im, bbox)
+ pose_data = face_pose.pose(landmarks, dim)
+ #pose_degrees = pose_data['degrees'] # only keep the degrees data
+ #pose_degrees['points_nose'] = pose_data
+ # use the project point data if display flag set
+ if opt_display:
+ dst = im.copy()
+ face_pose.draw_pose(dst, pose_data['point_nose'], pose_data['points'])
+ face_pose.draw_degrees(dst, pose_data)
+ # display to cv window
+ cv.imshow('', dst)
+ while True:
+ k = cv.waitKey(1) & 0xFF
+ if k == 27 or k == ord('q'): # ESC
+ cv.destroyAllWindows()
+ sys.exit()
+ elif k != 255:
+ # any key to continue
+ break
+ # add image index and append to result CSV data
+ pose_data['roi_index'] = roi_index
+ for k, v in pose_data['points'].items():
+ pose_data[f'point_{k}_x'] = v[0][0] / dim[0]
+ pose_data[f'point_{k}_y'] = v[0][1] / dim[1]
+ pose_data.pop('points')
+ pose_data['point_nose_x'] = pose_data['point_nose'][0] / dim[0]
+ pose_data['point_nose_y'] = pose_data['point_nose'][1] / dim[1]
+ pose_data.pop('point_nose')
+ poses.append(pose_data)
- # save date
+ # create dataframe
file_utils.mkdirs(fp_out)
df = pd.DataFrame.from_dict(poses)
+ # save date
df.index.name = 'index'
- df.to_csv(fp_out) \ No newline at end of file
+ df.to_csv(fp_out)
+ # save script
+ cmd_line = ' '.join(sys.argv)
+ file_utils.write_text(cmd_line, '{}.sh'.format(fp_out)) \ No newline at end of file
diff --git a/megapixels/commands/cv/face_pose_mt.py b/megapixels/commands/cv/face_pose_mt.py
new file mode 100644
index 00000000..8fef2c2c
--- /dev/null
+++ b/megapixels/commands/cv/face_pose_mt.py
@@ -0,0 +1,138 @@
+"""
+Converts ROIs to pose: yaw, roll, pitch
+"""
+
+import click
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None,
+ help='Override enum input filename CSV')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--data_store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.SSD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
+ help='Slice list of files')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('-d', '--display', 'opt_display', is_flag=True,
+ help='Display image for debugging')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
+ opt_slice, opt_force, opt_display):
+ """Converts ROIs to pose: roll, yaw, pitch"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ from glob import glob
+
+ from tqdm import tqdm
+ import numpy as np
+ import dlib # must keep a local reference for dlib
+ import cv2 as cv
+ import pandas as pd
+
+ from app.models.bbox import BBox
+ from app.utils import logger_utils, file_utils, im_utils
+ from app.processors.face_landmarks import LandmarksDLIB
+ from app.processors.face_pose import FacePoseDLIB
+ from app.models.data_store import DataStore
+
+ # -------------------------------------------------
+ # init here
+
+ log = logger_utils.Logger.getLogger()
+
+ # set data_store
+ data_store = DataStore(opt_data_store, opt_dataset)
+
+ # get filepath out
+ fp_out = data_store.metadata(types.Metadata.FACE_POSE) if opt_fp_out is None else opt_fp_out
+ if not opt_force and Path(fp_out).exists():
+ log.error('File exists. Use "-f / --force" to overwite')
+ return
+
+ # init face processors
+ face_pose = FacePoseDLIB()
+ face_landmarks = LandmarksDLIB()
+
+ # load filepath data
+ fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
+ df_record = pd.read_csv(fp_record).set_index('index')
+ # load ROI data
+ fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
+ df_roi = pd.read_csv(fp_roi).set_index('index')
+ # slice if you want
+ if opt_slice:
+ df_roi = df_roi[opt_slice[0]:opt_slice[1]]
+ # group by image index (speedup if multiple faces per image)
+ df_img_groups = df_roi.groupby('record_index')
+ log.debug('processing {:,} groups'.format(len(df_img_groups)))
+
+ # store poses and convert to DataFrame
+ poses = []
+
+ # iterate
+ for record_index, df_img_group in tqdm(df_img_groups):
+ # make fp
+ ds_record = df_record.iloc[record_index]
+ fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
+ im = cv.imread(fp_im)
+ for roi_id, df_img in df_img_group.iterrows():
+ # get bbox
+ x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h
+ dim = im.shape[:2][::-1]
+ bbox = BBox.from_xywh(x, y, w, h).to_dim(dim)
+ # get pose
+ landmarks = face_landmarks.landmarks(im, bbox)
+ pose_data = face_pose.pose(landmarks, dim, project_points=opt_display)
+ pose_degrees = pose_data['degrees'] # only keep the degrees data
+
+ # use the project point data if display flag set
+ if opt_display:
+ pts_im = pose_data['points_image']
+ pts_model = pose_data['points_model']
+ pt_nose = pose_data['point_nose']
+ dst = im.copy()
+ face_pose.draw_pose(dst, pts_im, pts_model, pt_nose)
+ face_pose.draw_degrees(dst, pose_degrees)
+ # display to cv window
+ cv.imshow('', dst)
+ while True:
+ k = cv.waitKey(1) & 0xFF
+ if k == 27 or k == ord('q'): # ESC
+ cv.destroyAllWindows()
+ sys.exit()
+ elif k != 255:
+ # any key to continue
+ break
+
+ # add image index and append to result CSV data
+ pose_degrees['record_index'] = record_index
+ poses.append(pose_degrees)
+
+
+ # save date
+ file_utils.mkdirs(fp_out)
+ df = pd.DataFrame.from_dict(poses)
+ df.index.name = 'index'
+ df.to_csv(fp_out) \ No newline at end of file
diff --git a/megapixels/commands/cv/face_roi.py b/megapixels/commands/cv/face_roi.py
index a08566a8..a09a1ce0 100644
--- a/megapixels/commands/cv/face_roi.py
+++ b/megapixels/commands/cv/face_roi.py
@@ -20,7 +20,7 @@ color_filters = {'color': 1, 'gray': 2, 'all': 3}
help='Override enum media directory')
@click.option('--data_store', 'opt_data_store',
type=cfg.DataStoreVar,
- default=click_utils.get_default(types.DataStore.SSD),
+ default=click_utils.get_default(types.DataStore.HDD),
show_default=True,
help=click_utils.show_help(types.Dataset))
@click.option('--dataset', 'opt_dataset',
@@ -52,10 +52,12 @@ color_filters = {'color': 1, 'gray': 2, 'all': 3}
help='Filter to keep color or grayscale images (color = keep color')
@click.option('--largest/--all-faces', 'opt_largest', is_flag=True, default=True,
help='Only keep largest face')
+@click.option('--zone', 'opt_zone', default=(0.0, 0.0), type=(float, float),
+ help='Face center must be located within zone region (0.5 = half width/height)')
@click.pass_context
def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset, opt_size, opt_detector_type,
opt_gpu, opt_conf_thresh, opt_pyramids, opt_slice, opt_display, opt_force, opt_color_filter,
- opt_largest):
+ opt_largest, opt_zone):
"""Converts frames with faces to CSV of ROIs"""
import sys
@@ -130,7 +132,7 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset,
continue
try:
- bboxes = detector.detect(im, size=opt_size, pyramids=opt_pyramids, largest=opt_largest)
+ bboxes = detector.detect(im, size=opt_size, pyramids=opt_pyramids, largest=opt_largest, zone=opt_zone)
except Exception as e:
log.error('could not detect: {}'.format(fp_im))
log.error('{}'.format(e))
@@ -142,17 +144,17 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset,
'x': bbox.x,
'y': bbox.y,
'w': bbox.w,
- 'h': bbox.h,
- 'image_width': im.shape[1],
- 'image_height': im.shape[0]}
+ 'h': bbox.h
+ }
data.append(roi)
+ if len(bboxes) == 0:
+ log.warn(f'no faces in: {fp_im}')
# debug display
if opt_display and len(bboxes):
im_md = im_utils.resize(im, width=min(1200, opt_size[0]))
for bbox in bboxes:
bbox_dim = bbox.to_dim(im_md.shape[:2][::-1])
- log.debug(f'bbox: {bbox_dim}')
cv.rectangle(im_md, bbox_dim.pt_tl, bbox_dim.pt_br, (0,255,0), 3)
cv.imshow('', im_md)
while True:
@@ -168,4 +170,7 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset,
file_utils.mkdirs(fp_out)
df = pd.DataFrame.from_dict(data)
df.index.name = 'index'
- df.to_csv(fp_out) \ No newline at end of file
+ df.to_csv(fp_out)
+ # save script
+ cmd_line = ' '.join(sys.argv)
+ file_utils.write_text(cmd_line, '{}.sh'.format(fp_out)) \ No newline at end of file
diff --git a/megapixels/commands/cv/face_vector.py b/megapixels/commands/cv/face_vector.py
index 7200d73b..7c03205c 100644
--- a/megapixels/commands/cv/face_vector.py
+++ b/megapixels/commands/cv/face_vector.py
@@ -15,7 +15,7 @@ from app.settings import app_cfg as cfg
help='Override enum media directory')
@click.option('--data_store', 'opt_data_store',
type=cfg.DataStoreVar,
- default=click_utils.get_default(types.DataStore.SSD),
+ default=click_utils.get_default(types.DataStore.HDD),
show_default=True,
help=click_utils.show_help(types.Dataset))
@click.option('--dataset', 'opt_dataset',
@@ -90,36 +90,28 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
log.debug('processing {:,} groups'.format(len(df_img_groups)))
vecs = []
-
- for image_index, df_img_group in tqdm(df_img_groups):
+ for record_index, df_img_group in tqdm(df_img_groups):
# make fp
- roi_index = df_img_group.index.values[0]
- # log.debug(f'roi_index: {roi_index}, image_index: {image_index}')
- ds_file = df_record.loc[roi_index] # locate image meta
- #ds_file = df_record.loc['index', image_index] # locate image meta
-
- fp_im = data_store.face(str(ds_file.subdir), str(ds_file.fn), str(ds_file.ext))
+ ds_record = df_record.iloc[record_index]
+ fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
im = cv.imread(fp_im)
- # get bbox
- x = df_img_group.x.values[0]
- y = df_img_group.y.values[0]
- w = df_img_group.w.values[0]
- h = df_img_group.h.values[0]
- imw = df_img_group.image_width.values[0]
- imh = df_img_group.image_height.values[0]
- dim = im.shape[:2][::-1]
- # get face vector
- dim = (imw, imh)
- bbox_dim = BBox.from_xywh(x, y, w, h).to_dim(dim) # convert to int real dimensions
- # compute vec
- # padding=opt_padding not yet implemented in 19.16 but merged in master
- vec = facerec.vec(im, bbox_dim, jitters=opt_jitters)
- vec_str = ','.join([repr(x) for x in vec]) # convert to string for CSV
- vecs.append( {'roi_index': roi_index, 'record_index': image_index, 'vec': vec_str})
+ for roi_index, df_img in df_img_group.iterrows():
+ # get bbox
+ x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h
+ dim = (ds_record.width, ds_record.height)
+ #dim = im.shape[:2][::-1]
+ # get face vector
+ bbox_dim = BBox.from_xywh(x, y, w, h).to_dim(dim) # convert to int real dimensions
+ # compute vec
+ # padding=opt_padding not yet implemented in 19.16 but merged in master
+ vec = facerec.vec(im, bbox_dim, jitters=opt_jitters)
+ vec_str = ','.join([repr(x) for x in vec]) # convert to string for CSV
+ vecs.append( {'roi_index': roi_index, 'record_index': record_index, 'vec': vec_str})
- # save date
+ # create dataframe
df = pd.DataFrame.from_dict(vecs)
df.index.name = 'index'
+ # save CSV
file_utils.mkdirs(fp_out)
df.to_csv(fp_out) \ No newline at end of file
diff --git a/megapixels/commands/cv/face_vector_mt.py b/megapixels/commands/cv/face_vector_mt.py
new file mode 100644
index 00000000..412f9806
--- /dev/null
+++ b/megapixels/commands/cv/face_vector_mt.py
@@ -0,0 +1,118 @@
+"""
+Converts ROIs to face vector
+"""
+
+import click
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+@click.command()
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--data_store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.SSD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS,
+ help='Number of jitters')
+@click.option('-p', '--padding', 'opt_padding', default=cfg.DLIB_FACEREC_PADDING,
+ help='Percentage padding')
+@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
+ help='Slice list of files')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.pass_context
+def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
+ opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding):
+ """Converts face ROIs to vectors"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ from glob import glob
+
+ from tqdm import tqdm
+ import numpy as np
+ import dlib # must keep a local reference for dlib
+ import cv2 as cv
+ import pandas as pd
+
+ from app.models.bbox import BBox
+ from app.models.data_store import DataStore
+ from app.utils import logger_utils, file_utils, im_utils
+ from app.processors import face_recognition
+
+
+ # -------------------------------------------------
+ # init here
+
+ log = logger_utils.Logger.getLogger()
+ # set data_store
+ data_store = DataStore(opt_data_store, opt_dataset)
+
+ # get filepath out
+ fp_out = data_store.metadata(types.Metadata.FACE_VECTOR) if opt_fp_out is None else opt_fp_out
+ if not opt_force and Path(fp_out).exists():
+ log.error('File exists. Use "-f / --force" to overwite')
+ return
+
+ # init face processors
+ facerec = face_recognition.RecognitionDLIB()
+
+ # load data
+ fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
+ df_record = pd.read_csv(fp_record).set_index('index')
+ fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
+ df_roi = pd.read_csv(fp_roi).set_index('index')
+
+ if opt_slice:
+ df_roi = df_roi[opt_slice[0]:opt_slice[1]]
+
+ # -------------------------------------------------
+ # process here
+ df_img_groups = df_roi.groupby('record_index')
+ log.debug('processing {:,} groups'.format(len(df_img_groups)))
+
+ vecs = []
+ for record_index, df_img_group in tqdm(df_img_groups):
+ # make fp
+ ds_record = df_record.iloc[record_index]
+ fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
+ im = cv.imread(fp_im)
+ for roi_index, df_img in df_img_group.iterrows():
+ # get bbox
+ x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h
+ imw = df_img.image_width
+ imh = df_img.image_height
+ dim = im.shape[:2][::-1]
+ # get face vector
+ dim = (imw, imh)
+ bbox_dim = BBox.from_xywh(x, y, w, h).to_dim(dim) # convert to int real dimensions
+ # compute vec
+ # padding=opt_padding not yet implemented in 19.16 but merged in master
+ vec = facerec.vec(im, bbox_dim, jitters=opt_jitters)
+ vec_str = ','.join([repr(x) for x in vec]) # convert to string for CSV
+ vecs.append( {'roi_index': roi_index, 'record_index': record_index, 'vec': vec_str})
+
+
+ # save date
+ df = pd.DataFrame.from_dict(vecs)
+ df.index.name = 'index'
+ file_utils.mkdirs(fp_out)
+ df.to_csv(fp_out) \ No newline at end of file
diff --git a/megapixels/commands/datasets/records.py b/megapixels/commands/datasets/file_record.py
index b6ef618b..355b22f2 100644
--- a/megapixels/commands/datasets/records.py
+++ b/megapixels/commands/datasets/file_record.py
@@ -10,7 +10,12 @@ from app.utils.logger_utils import Logger
log = Logger.getLogger()
-identity_sources = ['subdir', 'subdir_head', 'subdir_tail']
+# Choose part of the filepath that will be used for the person identity
+# eg subdirectory "lfw/media/original/batch_1/train/barack_obama/001.jpg" --> [subdir_tail] --> "barack_obama"
+# eg subdirectory "lfw/media/original/batch_1/train/barack_obama/001.jpg" --> [subdir_head] --> "batch_1"
+# eg subdirectory "lfw/media/original/batch_1/train/barack_obama/001.jpg" --> [subdir] --> "barack_obama"
+
+identity_sources = ['subdir', 'numeric']
@click.command()
@click.option('-i', '--input', 'opt_fp_in', default=None,
@@ -21,7 +26,7 @@ identity_sources = ['subdir', 'subdir_head', 'subdir_tail']
help='Override enum media directory')
@click.option('--data_store', 'opt_data_store',
type=cfg.DataStoreVar,
- default=click_utils.get_default(types.DataStore.SSD),
+ default=click_utils.get_default(types.DataStore.HDD),
show_default=True,
help=click_utils.show_help(types.Dataset))
@click.option('--dataset', 'opt_dataset',
@@ -35,7 +40,8 @@ identity_sources = ['subdir', 'subdir_head', 'subdir_tail']
help='Number of threads')
@click.option('-f', '--force', 'opt_force', is_flag=True,
help='Force overwrite file')
-@click.option('--identity', 'opt_identity', default=None, type=click.Choice(identity_sources),
+@click.option('--identity', 'opt_identity', type=click.Choice(identity_sources),
+ default='numeric',
help='Identity source, blank for no identity')
@click.option('--recursive/--no-recursive', 'opt_recursive', is_flag=True, default=False,
help='Use glob recursion (slower)')
@@ -44,7 +50,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media,
opt_identity, opt_force, opt_recursive):
"""Generates sha256, uuid, and identity index CSV file"""
- import sys
+ import sys, os
from glob import glob
from os.path import join
from pathlib import Path
@@ -53,9 +59,11 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media,
import random
import uuid
+ import cv2 as cv
import pandas as pd
from tqdm import tqdm
from glob import glob
+ from operator import itemgetter
from app.models.data_store import DataStore
from app.utils import file_utils, im_utils
@@ -91,15 +99,26 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media,
pbar = tqdm(total=len(fp_ims))
- def as_sha256(fp_im):
+ def pool_mapper(fp_im):
pbar.update(1)
- return file_utils.sha256(fp_im)
+ sha256 = file_utils.sha256(fp_im)
+ im = cv.imread(fp_im)
+ w, h = im.shape[:2][::-1]
+ file_size_kb = os.stat(fp_im).st_size // 1000
+ num_channels = im_utils.num_channels(im)
+ return {
+ 'width': w,
+ 'height': h,
+ 'sha256': sha256,
+ 'file_size_kb': file_size_kb,
+ 'num_channels': num_channels
+ }
# convert to thread pool
- sha256s = [] # ?
+ pool_maps = [] # ?
pool = ThreadPool(opt_threads)
with tqdm(total=len(fp_ims)) as pbar:
- sha256s = pool.map(as_sha256, fp_ims)
+ pool_maps = pool.map(pool_mapper, fp_ims)
pbar.close()
@@ -108,11 +127,12 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media,
data = []
indentity_count = 0
- for sha256, fp_im in zip(sha256s, fp_ims):
+ for pool_map, fp_im in zip(pool_maps, fp_ims):
fpp_im = Path(fp_im)
subdir = str(fpp_im.parent.relative_to(fp_in))
+ #subdir = '' if subdir is '.' else subdir
+ log.debug(subdir)
-
if opt_identity:
subdirs = subdir.split('/')
if not len(subdirs) > 0:
@@ -120,27 +140,46 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media,
log.error('exiting')
return
if opt_identity == 'subdir':
- identity = subdirs[0] # use first/only part
- elif opt_identity == 'subdir_head':
- identity = subdirs[0] # use first part of subdir path
- elif opt_identity == 'subdir_tail':
identity = subdirs[-1] # use last part of subdir path
+ elif opt_identity == 'numeric':
+ identity = indentity_count # use incrementing number
+ indentity_count += 1
else:
- identity = indentity_count # use incrementing number
- indentity_count += 1
+ identity = ''
data.append({
'subdir': subdir,
+ 'num_channels': pool_map['num_channels'],
'fn': fpp_im.stem,
'ext': fpp_im.suffix.replace('.',''),
- 'sha256': sha256,
+ 'sha256': pool_map['sha256'],
'uuid': uuid.uuid4(),
- 'identity_key': identity
+ 'identity_key': identity,
+ 'width': pool_map['width'],
+ 'height': pool_map['height']
})
+ # create dataframe
df_records = pd.DataFrame.from_dict(data)
+
+ df_records.index.name = 'index' # reassign 'index' as primary key column
+ # write to CSV
+ file_utils.mkdirs(fp_out)
+ df_records.to_csv(fp_out)
+ # done
+ log.info(f'wrote {len(df_records)} rows to "{fp_out}"')
+ # save script
+ cmd_line = ' '.join(sys.argv)
+ file_utils.write_text(cmd_line, '{}.sh'.format(fp_out))
+
+
+'''
+# create dataframe
+ df_records = pd.DataFrame.from_dict(data)
+
+ # add identity key (used for associating identity)
if opt_identity:
- log.info(f'adding identity index using: "{opt_identity}". This may take a while...')
+ log.info(f'adding identity index using: "{opt_identity}" subdirectory')
# convert dict to DataFrame
# sort based on identity_key
df_records = df_records.sort_values(by=['identity_key'], ascending=True)
@@ -149,19 +188,17 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media,
# populate the identity_index
df_records_identity_groups = df_records.groupby('identity_key')
# enumerate groups to create identity indices
+ log.info(f'updating records with identity_key. This may take a while...')
+ st = time.time()
for identity_index, df_records_identity_group_tuple in enumerate(df_records_identity_groups):
identity_key, df_records_identity_group = df_records_identity_group_tuple
for ds_record in df_records_identity_group.itertuples():
df_records.at[ds_record.Index, 'identity_index'] = identity_index
# reset index after being sorted
df_records = df_records.reset_index(drop=True)
+ log.debug('update time: {:.2f}s'.format(time.time() - st))
else:
# name everyone person 1, 2, 3...
+ df_records = df_records.sort_values(by=['subdir'], ascending=True)
pass
-
- df_records.index.name = 'index' # reassign 'index' as primary key column
- # write to CSV
- file_utils.mkdirs(fp_out)
- df_records.to_csv(fp_out)
- # done
- log.info(f'wrote rows: {len(df_records)} to {fp_out}') \ No newline at end of file
+''' \ No newline at end of file
diff --git a/megapixels/commands/datasets/msceleb.py b/megapixels/commands/datasets/msceleb.py
new file mode 100644
index 00000000..969a1df2
--- /dev/null
+++ b/megapixels/commands/datasets/msceleb.py
@@ -0,0 +1,66 @@
+'''
+Converts MsCelebV1-ImageThumbnails.part.00.tsv to names and images
+'''
+import click
+
+from app.settings import types
+from app.models.dataset import Dataset
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+from app.utils.logger_utils import Logger
+
+log = Logger.getLogger()
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', required=True,
+ help='Path to input TSV file')
+@click.option('-o', '--output', 'opt_fp_out', required=True,
+ help='Output path for images')
+@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
+ help='Slice list of files')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_slice):
+ """Converts MSCeleb TSV to images"""
+
+ import sys
+ import os
+ from glob import glob
+ from os.path import join
+ from pathlib import Path
+ import time
+ import base64
+ from io import BytesIO
+
+ import pandas as pd
+ import cv2 as cv
+ from PIL import Image
+ from tqdm import tqdm
+
+ from app.utils import file_utils, im_utils
+ from app.models.data_store import DataStore
+
+
+ log = Logger.getLogger()
+ log.debug(f'opening "{opt_fp_in}" ...')
+ try:
+ n_lines = sum(1 for line in open(opt_fp_in))
+ except:
+ n_lines = 1
+
+ log.debug('{:,}'.format(n_lines))
+
+ with open(opt_fp_in, 'rb') as fp:
+ for data_line in tqdm(fp, total=n_lines):
+ try:
+ freebase_mid, query_name, search_rank, url_image, url_page, b64_bytes = data_line.decode().split('\t')
+ # decode image
+ im64 = base64.b64decode(b64_bytes)
+ im = Image.open(BytesIO(im64))
+ # save image
+ dir_out = join(opt_fp_out, freebase_mid)
+ Path(dir_out).mkdir(parents=True, exist_ok=True)
+ idx = len(os.listdir(dir_out))
+ fp_out = join(dir_out, '{}.jpg'.format(file_utils.zpad(idx)))
+ im.save(fp_out, quality=100)
+ except Exception as e:
+ log.error('Could not process: {}, {}. Error: {}'.format(query_name, url_image, e))
diff --git a/megapixels/commands/datasets/msceleb_names.py b/megapixels/commands/datasets/msceleb_names.py
new file mode 100644
index 00000000..6ee2ad9a
--- /dev/null
+++ b/megapixels/commands/datasets/msceleb_names.py
@@ -0,0 +1,57 @@
+'''
+Converts MsCelebV1-ImageThumbnails.part.00.tsv to names and images
+'''
+import click
+
+from app.settings import types
+from app.models.dataset import Dataset
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+from app.utils.logger_utils import Logger
+
+log = Logger.getLogger()
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', required=True,
+ help='Path to input TSV file')
+@click.option('-o', '--output', 'opt_fp_out', required=True,
+ help='Output path for images')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out):
+ """Converts MSCeleb TSV to names file with image count"""
+
+ import sys
+ import os
+ from glob import glob
+ from os.path import join
+ from pathlib import Path
+ import time
+ import base64
+ from io import BytesIO
+
+ import pandas as pd
+ import cv2 as cv
+ from PIL import Image
+ from tqdm import tqdm
+
+ from app.utils import file_utils, im_utils
+ from app.models.data_store import DataStore
+
+
+ log = Logger.getLogger()
+ log.debug(f'opening "{opt_fp_in}" ...')
+ n_lines = sum(1 for line in open(opt_fp_in))
+ log.debug('{:,}'.format(n_lines))
+
+ with open(opt_fp_in, 'rb') as fp:
+ for data_line in tqdm(fp, total=n_lines):
+ freebase_mid, query_name, search_rank, url_image, url_page, b64_bytes = data_line.decode().split('\t')
+ # decode image
+ im64 = base64.b64decode(b64_bytes)
+ im = Image.open(BytesIO(im64))
+ # save image
+ dir_out = join(opt_fp_out, freebase_mid)
+ Path(dir_out).mkdir(parents=True, exist_ok=True)
+ idx = len(os.listdir(dir_out))
+ fp_out = join(dir_out, '{}.jpg'.format(file_utils.zpad(idx)))
+ im.save(fp_out, quality=100)
diff --git a/megapixels/commands/demo/face_search.py b/megapixels/commands/demo/face_search.py
index 6e4bcdad..ca0b8016 100644
--- a/megapixels/commands/demo/face_search.py
+++ b/megapixels/commands/demo/face_search.py
@@ -15,7 +15,7 @@ log = Logger.getLogger()
type=cfg.DataStoreVar,
default=click_utils.get_default(types.DataStore.SSD),
show_default=True,
- help=click_utils.show_help(types.Dataset))
+ help=click_utils.show_help(types.DataStore))
@click.option('--dataset', 'opt_dataset',
type=cfg.DatasetVar,
required=True,
@@ -26,7 +26,7 @@ log = Logger.getLogger()
@click.option('--gpu', 'opt_gpu', default=0,
help='GPU index (use -1 for CPU')
@click.pass_context
-def cli(ctx, opt_fp_in, opt_data_store, opt_dataset, opt_gpu):
+def cli(ctx, opt_fp_in, opt_data_store, opt_dataset, opt_results, opt_gpu):
"""Display image info"""
import sys