summaryrefslogtreecommitdiff
path: root/megapixels/commands/processor/face_vector.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/processor/face_vector.py')
-rw-r--r--megapixels/commands/processor/face_vector.py133
1 files changed, 133 insertions, 0 deletions
diff --git a/megapixels/commands/processor/face_vector.py b/megapixels/commands/processor/face_vector.py
new file mode 100644
index 00000000..cb155d08
--- /dev/null
+++ b/megapixels/commands/processor/face_vector.py
@@ -0,0 +1,133 @@
+"""
+Converts ROIs to face vector
+NB: the VGG Face2 extractor should be used with MTCNN ROIs (not square)
+ the DLIB face extractor should be used with DLIB ROIs (square)
+see https://github.com/ox-vgg/vgg_face2 for TAR@FAR
+"""
+
+import click
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+@click.command()
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.HDD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--size', 'opt_size',
+ type=(int, int), default=cfg.DEFAULT_SIZE_FACE_DETECT,
+ help='Output image size')
+@click.option('-e', '--extractor', 'opt_extractor',
+ default=click_utils.get_default(types.FaceExtractor.VGG),
+ type=cfg.FaceExtractorVar,
+ help='Type of extractor framework/network to use')
+@click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS,
+ help='Number of jitters (only for dlib')
+@click.option('-p', '--padding', 'opt_padding', default=cfg.FACEREC_PADDING,
+ help='Percentage ROI padding')
+@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
+ help='Slice list of files')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.pass_context
+def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
+ opt_extractor, opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding):
+ """Converts face ROIs to vectors"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ from glob import glob
+
+ from tqdm import tqdm
+ import numpy as np
+ import dlib # must keep a local reference for dlib
+ import cv2 as cv
+ import pandas as pd
+
+ from app.models.bbox import BBox
+ from app.models.data_store import DataStore
+ from app.utils import logger_utils, file_utils, im_utils
+ from app.processors import face_extractor
+
+
+ # -------------------------------------------------
+ # init here
+
+ log = logger_utils.Logger.getLogger()
+ # set data_store
+ data_store = DataStore(opt_data_store, opt_dataset)
+
+ # get filepath out
+ fp_out = data_store.metadata(types.Metadata.FACE_VECTOR) if opt_fp_out is None else opt_fp_out
+ if not opt_force and Path(fp_out).exists():
+ log.error('File exists. Use "-f / --force" to overwite')
+ return
+
+ # init face processors
+ if opt_extractor == types.FaceExtractor.DLIB:
+ log.debug('set dlib')
+ extractor = face_extractor.ExtractorDLIB(gpu=opt_gpu, jitters=opt_jitters)
+ elif opt_extractor == types.FaceExtractor.VGG:
+ extractor = face_extractor.ExtractorVGG()
+
+ # load data
+ fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
+ df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index')
+ fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
+ df_roi = pd.read_csv(fp_roi).set_index('index')
+
+ if opt_slice:
+ df_roi = df_roi[opt_slice[0]:opt_slice[1]]
+
+ # -------------------------------------------------
+ # process images
+
+ df_img_groups = df_roi.groupby('record_index')
+ log.debug('processing {:,} groups'.format(len(df_img_groups)))
+
+ vecs = []
+ for record_index, df_img_group in tqdm(df_img_groups):
+ # make fp
+ ds_record = df_record.iloc[record_index]
+ fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
+ im = cv.imread(fp_im)
+ im = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+ for roi_index, df_img in df_img_group.iterrows():
+ # get bbox
+ x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h
+ dim = (ds_record.width, ds_record.height)
+ # get face vector
+ bbox = BBox.from_xywh(x, y, w, h) # norm
+ # compute vec
+ vec = extractor.extract(im, bbox) # use normalized BBox
+ vec_str = extractor.to_str(vec)
+ vec_obj = {'vec':vec_str, 'roi_index': roi_index, 'record_index':record_index}
+ vecs.append(vec_obj)
+
+ # -------------------------------------------------
+ # save data
+
+ # create DataFrame and save to CSV
+ df = pd.DataFrame.from_dict(vecs)
+ df.index.name = 'index'
+ file_utils.mkdirs(fp_out)
+ df.to_csv(fp_out)
+
+ # save script
+ file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out)) \ No newline at end of file