summaryrefslogtreecommitdiff
path: root/megapixels/commands/demo/face_landmarks_2d.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/demo/face_landmarks_2d.py')
-rw-r--r--megapixels/commands/demo/face_landmarks_2d.py155
1 files changed, 15 insertions, 140 deletions
diff --git a/megapixels/commands/demo/face_landmarks_2d.py b/megapixels/commands/demo/face_landmarks_2d.py
index 22e09297..145a12a6 100644
--- a/megapixels/commands/demo/face_landmarks_2d.py
+++ b/megapixels/commands/demo/face_landmarks_2d.py
@@ -3,7 +3,6 @@ Crop images to prepare for training
"""
import click
-# from PIL import Image, ImageOps, ImageFilter, ImageDraw
from app.settings import types
from app.utils import click_utils
@@ -13,26 +12,14 @@ from app.settings import app_cfg as cfg
@click.command()
@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
help='Image filepath')
-@click.option('-o', '--output', 'opt_fp_out', default=None,
- help='GIF output path')
@click.option('--size', 'opt_size',
type=(int, int), default=(300, 300),
help='Output image size')
-@click.option('--gif-size', 'opt_gif_size',
- type=(int, int), default=(480, 480),
- help='GIF output size')
-@click.option('--gif-frames', 'opt_gif_frames', default=15,
- help='GIF frames')
-@click.option('-g', '--gpu', 'opt_gpu', default=0,
- help='GPU index')
-@click.option('-f', '--force', 'opt_force', is_flag=True,
- help='Force overwrite file')
-@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=True,
help='Display detections to debug')
@click.pass_context
-def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_gif_frames,
- opt_size, opt_gif_size, opt_force, opt_display):
- """Generates 3D landmark animations from CSV files"""
+def cli(ctx, opt_fp_in, opt_size, opt_display):
+ """2D 68-point landmarks"""
import sys
import os
@@ -52,12 +39,6 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_gif_frames,
from app.utils import plot_utils
from app.processors import face_detector, face_landmarks
from app.models.data_store import DataStore
-
- # TOOD add selective testing
- opt_run_pose = True
- opt_run_2d_68 = True
- opt_run_3d_68 = True
- opt_run_3d_68 = True
# -------------------------------------------------
@@ -66,7 +47,6 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_gif_frames,
log = logger_utils.Logger.getLogger()
- # load image
im = cv.imread(opt_fp_in)
im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
@@ -74,146 +54,41 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_gif_frames,
# ----------------------------------------------------------------------------
# detect face
- face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ face_detector = face_detector.DetectorCVDNN()
log.info('detecting face...')
st = time.time()
bboxes = face_detector.detect(im_resized, largest=True)
- bbox = bboxes[0]
+ bbox_norm = bboxes[0]
dim = im_resized.shape[:2][::-1]
- bbox_dim = bbox.to_dim(dim)
- if not bbox:
+ bbox_dim = bbox_norm.to_dim(dim)
+ if not bbox_norm:
log.error('no face detected')
return
else:
log.info(f'Detected face in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # detect 3D landmarks
-
- log.info('loading 3D landmark generator files...')
- landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
- log.info('generating 3D landmarks...')
- st = time.time()
- points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
- log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate 3D GIF animation
- log.info('generating 3D animation...')
- if not opt_fp_out:
- fpp_im = Path(opt_fp_in)
- fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
- else:
- fp_out = opt_fp_out
- st = time.time()
- plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
- size=opt_gif_size, num_frames=opt_gif_frames)
- log.info(f'Generated animation in {(time.time() - st):.2f}s')
- log.info(f'Saved to: {fp_out}')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate face vectors, only to test if feature extraction works
-
- log.info('initialize face recognition model...')
- from app.processors import face_recognition
- face_rec = face_recognition.RecognitionDLIB()
- st = time.time()
- log.info('generating face vector...')
- vec = face_rec.vec(im_resized, bbox_dim)
- log.info(f'generated face vector in {(time.time() - st):.2f}s')
- log.info('')
-
# ----------------------------------------------------------------------------
# generate 68 point landmarks using dlib
log.info('initializing face landmarks 68 dlib...')
- from app.processors import face_landmarks
landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
log.info('generating 2D 68PT landmarks...')
st = time.time()
- points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ points_norm = landmark_detector_2d_68.landmarks(im_resized, bbox_norm)
log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
- log.info('')
# ----------------------------------------------------------------------------
- # generate pose from 68 point 2D landmarks
-
- if opt_run_pose:
- log.info('initialize pose...')
- from app.processors import face_pose
- pose_detector = face_pose.FacePoseDLIB()
- log.info('generating pose...')
- st = time.time()
- pose_data = pose_detector.pose(points_2d_68, dim)
- log.info(f'generated pose {(time.time() - st):.2f}s')
- log.info('')
-
-
- # x
-
-
-
# display
+
if opt_display:
-
- # draw bbox
-
- # draw 3d landmarks
- im_landmarks_3d_68 = im_resized.copy()
- draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
- draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
# draw 2d landmarks
- im_landmarks_2d_68 = im_resized.copy()
- draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
- draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
-
- # draw pose
- if opt_run_pose:
- im_pose = im_resized.copy()
- draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
- draw_utils.draw_degrees(im_pose, pose_data)
-
- # draw animated GIF
- im = Image.open(opt_fp_out)
- im_frames = []
- duration = im.info['duration']
- try:
- while True:
- im.seek(len(im_frames))
- mypalette = im.getpalette()
- im.putpalette(mypalette)
- im_jpg = Image.new("RGB", im.size)
- im_jpg.paste(im)
- im_np = im_utils.pil2np(im_jpg.copy())
- im_frames.append(im_np)
- except EOFError:
- pass # end of GIF sequence
-
- n_frames = len(im_frames)
- frame_number = 0
+ im_lmarks = im_resized.copy()
+ im_lmarks = draw_utils.draw_bbox(im_lmarks, bbox_norm)
+ im_lmarks = draw_utils.draw_landmarks2D(im_lmarks, points_norm)
- while True:
- # show all images here
- cv.imshow('Original', im_resized)
- cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
- cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
- cv.imshow('Pose', im_pose)
- cv.imshow('3D 68pt GIF', im_frames[frame_number])
- frame_number = (frame_number + 1) % n_frames
- k = cv.waitKey(duration) & 0xFF
- if k == 27 or k == ord('q'): # ESC
- cv.destroyAllWindows()
- sys.exit()
- elif k != 255:
- # any key to continue
- break \ No newline at end of file
+ # show all images here
+ cv.imshow('2D 68PT Landmarks', im_lmarks)
+ display_utils.handle_keyboard() \ No newline at end of file