diff options
Diffstat (limited to 'megapixels/commands/datasets/imdb_face_download.py')
| -rw-r--r-- | megapixels/commands/datasets/imdb_face_download.py | 60 |
1 files changed, 60 insertions, 0 deletions
diff --git a/megapixels/commands/datasets/imdb_face_download.py b/megapixels/commands/datasets/imdb_face_download.py new file mode 100644 index 00000000..4180fac0 --- /dev/null +++ b/megapixels/commands/datasets/imdb_face_download.py @@ -0,0 +1,60 @@ +import click + +fp_in = '/data_store/datasets/people/imdb_face/downloads/IMDb-Face.csv' +fp_out = '/data_store_hdd/datasets/people/imdb_face/media/' + +@click.command() +@click.option('-i', '--input', 'opt_fp_in', required=True, default=fp_in, + help='Input') +@click.option('-o', '--output', 'opt_fp_out', required=True, default=fp_out, + help='Output') +@click.option('-t', '--threads', 'opt_threads', default=8, + help='Number of threads') +@click.pass_context +def cli(ctx, opt_fp_in, opt_fp_out, opt_threads): + """Download IMDb-Face URLs""" + + from os.path import join + from functools import partial + from multiprocessing.dummy import Pool as ThreadPool + import urllib + + import pandas as pd + from tqdm import tqdm + from app.utils import file_utils + from app.utils.logger_utils import Logger + + log = Logger.getLogger() + + # setup multithreading function + def pool_process(item): + # threaded function + try: + # download image + file_utils.mkdirs(item['fp']) + urllib.request.urlretrieve(item['url'], item['fp'], timeout=20) + item['status'] = True + except Exception as e: + log.debug(f'Error: {e}') + item['status'] = False + pbar.update(1) + return item + + # setup multithreading data holds + log.debug(f'loading {opt_fp_in}') + records = pd.read_csv(opt_fp_in).to_dict('records') + pool_items = [{'url':x['url'], 'fp': join(opt_fp_out, x['index'], x['image'])} for x in records] + num_items = len(pool_items) + log.info(f'processing {num_items:,} items') + pool_results = [] + + # run the multithreading with progress bar + pbar = tqdm(total=num_items) + pool_process = partial(pool_process) + pool = ThreadPool(opt_threads) + with tqdm(total=num_items) as pbar: + pool_results = pool.map(pool_process, pool_items) + + pbar.close() + + |
