summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/cv')
-rw-r--r--megapixels/commands/cv/face_attributes.py139
-rw-r--r--megapixels/commands/cv/face_landmark_2d_68.py4
-rw-r--r--megapixels/commands/cv/face_pose.py11
-rw-r--r--megapixels/commands/cv/face_roi.py14
-rw-r--r--megapixels/commands/cv/face_vector.py13
5 files changed, 160 insertions, 21 deletions
diff --git a/megapixels/commands/cv/face_attributes.py b/megapixels/commands/cv/face_attributes.py
new file mode 100644
index 00000000..bb7978f7
--- /dev/null
+++ b/megapixels/commands/cv/face_attributes.py
@@ -0,0 +1,139 @@
+"""
+
+"""
+
+import click
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None,
+ help='Override enum input filename CSV')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.HDD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--size', 'opt_size',
+ type=(int, int), default=cfg.DEFAULT_SIZE_FACE_DETECT,
+ help='Processing size for detection')
+@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
+ help='Slice list of files')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('-d', '--display', 'opt_display', is_flag=True,
+ help='Display image for debugging')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
+ opt_size, opt_slice, opt_force, opt_display):
+ """Creates 2D 68-point landmarks"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ from glob import glob
+
+ from tqdm import tqdm
+ import numpy as np
+ import cv2 as cv
+ import pandas as pd
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.processors import face_age_gender
+ from app.models.data_store import DataStore
+ from app.models.bbox import BBox
+
+ # -------------------------------------------------------------------------
+ # init here
+
+ log = logger_utils.Logger.getLogger()
+ # init face processors
+ age_estimator_apnt = face_age_gender.FaceAgeApparent()
+ age_estimator_real = face_age_gender.FaceAgeReal()
+ gender_estimator = face_age_gender.FaceGender()
+
+ # init filepaths
+ data_store = DataStore(opt_data_store, opt_dataset)
+ # set file output path
+ metadata_type = types.Metadata.FACE_ATTRIBUTES
+ fp_out = data_store.metadata(metadata_type) if opt_fp_out is None else opt_fp_out
+ if not opt_force and Path(fp_out).exists():
+ log.error('File exists. Use "-f / --force" to overwite')
+ return
+
+ # -------------------------------------------------------------------------
+ # load filepath data
+ fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
+ df_record = pd.read_csv(fp_record, dtype={'fn':str}).set_index('index')
+ # load ROI data
+ fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
+ df_roi = pd.read_csv(fp_roi).set_index('index')
+ # slice if you want
+ if opt_slice:
+ df_roi = df_roi[opt_slice[0]:opt_slice[1]]
+ # group by image index (speedup if multiple faces per image)
+ df_img_groups = df_roi.groupby('record_index')
+ log.debug('processing {:,} groups'.format(len(df_img_groups)))
+
+ # store landmarks in list
+ results = []
+
+ # -------------------------------------------------------------------------
+ # iterate groups with file/record index as key
+
+ for record_index, df_img_group in tqdm(df_img_groups):
+
+ # access file_record DataSeries
+ file_record = df_record.iloc[record_index]
+
+ # load image
+ fp_im = data_store.face(file_record.subdir, file_record.fn, file_record.ext)
+ im = cv.imread(fp_im)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+ dim = im_resized.shape[:2][::-1]
+
+ # iterate ROIs in this image
+ for roi_index, df_img in df_img_group.iterrows():
+
+ # find landmarks
+ bbox_norm = BBox.from_xywh(df_img.x, df_img.y, df_img.w, df_img.h)
+ bbox_dim = bbox_norm.to_dim(dim)
+
+ #age_apnt = age_estimator_apnt.predict(im_resized, bbox_norm)
+ #age_real = age_estimator_real.predict(im_resized, bbox_norm)
+ #gender = gender_estimator.predict(im_resized, bbox_norm)
+
+ # attr_obj = {
+ # 'age_real':float(f'{age_real:.2f}'),
+ # 'age_apparent': float(f'{age_apnt:.2f}'),
+ # 'm': float(f'{gender["m"]:.4f}'),
+ # 'f': float(f'{gender["f"]:.4f}'),
+ # 'roi_index': roi_index
+ # }
+ attr_obj = {
+ 'roi_index': roi_index
+ }
+ results.append(attr_obj)
+
+
+ # create DataFrame and save to CSV
+ file_utils.mkdirs(fp_out)
+ df = pd.DataFrame.from_dict(results)
+ df.index.name = 'index'
+ df.to_csv(fp_out)
+
+ # save script
+ file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out)) \ No newline at end of file
diff --git a/megapixels/commands/cv/face_landmark_2d_68.py b/megapixels/commands/cv/face_landmark_2d_68.py
index e24d4b60..c6978a40 100644
--- a/megapixels/commands/cv/face_landmark_2d_68.py
+++ b/megapixels/commands/cv/face_landmark_2d_68.py
@@ -126,7 +126,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
bbox = BBox.from_xywh(x, y, w, h).to_dim(dim)
points = landmark_detector.landmarks(im_resized, bbox)
points_norm = landmark_detector.normalize(points, dim)
- points_flat = landmark_detector.flatten(points_norm)
+ points_str = landmark_detector.to_str(points_norm)
# display if optioned
if opt_display:
@@ -137,7 +137,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
display_utils.handle_keyboard()
# add to results for CSV
- results.append(points_flat)
+ results.append({'vec': points_str, 'roi_index':roi_index})
# create DataFrame and save to CSV
diff --git a/megapixels/commands/cv/face_pose.py b/megapixels/commands/cv/face_pose.py
index 70ea1f30..75db603b 100644
--- a/megapixels/commands/cv/face_pose.py
+++ b/megapixels/commands/cv/face_pose.py
@@ -92,7 +92,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
# load data
fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
- df_record = pd.read_csv(fp_record).set_index('index')
+ df_record = pd.read_csv(fp_record, dtype={'fn':str}).set_index('index')
# load ROI data
fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
df_roi = pd.read_csv(fp_roi).set_index('index')
@@ -125,10 +125,11 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h
#dim = (file_record.width, file_record.height)
dim = im_resized.shape[:2][::-1]
- bbox = BBox.from_xywh(x, y, w, h).to_dim(dim)
+ bbox_norm = BBox.from_xywh(x, y, w, h)
+ bbox_dim = bbox_norm.to_dim(dim)
# get pose
- landmarks = face_landmarks.landmarks(im_resized, bbox)
+ landmarks = face_landmarks.landmarks(im_resized, bbox_norm)
pose_data = face_pose.pose(landmarks, dim)
#pose_degrees = pose_data['degrees'] # only keep the degrees data
#pose_degrees['points_nose'] = pose_data
@@ -143,8 +144,8 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
# add image index and append to result CSV data
pose_data['roi_index'] = roi_index
for k, v in pose_data['points'].items():
- pose_data[f'point_{k}_x'] = v[0][0] / dim[0]
- pose_data[f'point_{k}_y'] = v[0][1] / dim[1]
+ pose_data[f'point_{k}_x'] = v[0] / dim[0]
+ pose_data[f'point_{k}_y'] = v[1] / dim[1]
# rearrange data structure for DataFrame
pose_data.pop('points')
diff --git a/megapixels/commands/cv/face_roi.py b/megapixels/commands/cv/face_roi.py
index 70fff401..950936cf 100644
--- a/megapixels/commands/cv/face_roi.py
+++ b/megapixels/commands/cv/face_roi.py
@@ -33,7 +33,7 @@ color_filters = {'color': 1, 'gray': 2, 'all': 3}
help='Output image size')
@click.option('-d', '--detector', 'opt_detector_type',
type=cfg.FaceDetectNetVar,
- default=click_utils.get_default(types.FaceDetectNet.DLIB_CNN),
+ default=click_utils.get_default(types.FaceDetectNet.CVDNN),
help=click_utils.show_help(types.FaceDetectNet))
@click.option('-g', '--gpu', 'opt_gpu', default=0,
help='GPU index')
@@ -97,8 +97,8 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset,
detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu)
elif opt_detector_type == types.FaceDetectNet.DLIB_HOG:
detector = face_detector.DetectorDLIBHOG()
- elif opt_detector_type == types.FaceDetectNet.MTCNN:
- detector = face_detector.DetectorMTCNN(gpu=opt_gpu)
+ elif opt_detector_type == types.FaceDetectNet.MTCNN_TF:
+ detector = face_detector.DetectorMTCNN_TF(gpu=opt_gpu)
elif opt_detector_type == types.FaceDetectNet.HAAR:
log.error('{} not yet implemented'.format(opt_detector_type.name))
return
@@ -106,7 +106,7 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset,
# get list of files to process
fp_in = data_store.metadata(types.Metadata.FILE_RECORD) if opt_fp_in is None else opt_fp_in
- df_records = pd.read_csv(fp_in).set_index('index')
+ df_records = pd.read_csv(fp_in, dtype={'fn':str}).set_index('index')
if opt_slice:
df_records = df_records[opt_slice[0]:opt_slice[1]]
log.debug('processing {:,} files'.format(len(df_records)))
@@ -144,9 +144,9 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset,
for bbox in bboxes:
roi = {
'record_index': int(df_record.Index),
- 'x': bbox.x,
- 'y': bbox.y,
- 'w': bbox.w,
+ 'x': bbox.x,
+ 'y': bbox.y,
+ 'w': bbox.w,
'h': bbox.h
}
data.append(roi)
diff --git a/megapixels/commands/cv/face_vector.py b/megapixels/commands/cv/face_vector.py
index 9e9f6396..9a527bc3 100644
--- a/megapixels/commands/cv/face_vector.py
+++ b/megapixels/commands/cv/face_vector.py
@@ -27,10 +27,10 @@ from app.settings import app_cfg as cfg
show_default=True,
help=click_utils.show_help(types.Dataset))
@click.option('--size', 'opt_size',
- type=(int, int), default=(300, 300),
+ type=(int, int), default=cfg.DEFAULT_SIZE_FACE_DETECT,
help='Output image size')
@click.option('-e', '--extractor', 'opt_extractor',
- default=types.FaceExtractor.VGG,
+ default=click_utils.get_default(types.FaceExtractor.VGG),
type=cfg.FaceExtractorVar,
help='Type of extractor framework/network to use')
@click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS,
@@ -88,7 +88,7 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
# load data
fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
- df_record = pd.read_csv(fp_record).set_index('index')
+ df_record = pd.read_csv(fp_record, dtype={'fn':str}).set_index('index')
fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
df_roi = pd.read_csv(fp_roi).set_index('index')
@@ -115,10 +115,9 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
bbox = BBox.from_xywh(x, y, w, h) # norm
# compute vec
vec = extractor.extract(im, bbox) # use normalized BBox
- vec_flat = extractor.flatten(vec)
- vec_flat['roi_index'] = roi_index
- vec_flat['record_index'] = record_index
- vecs.append(vec_flat)
+ vec_str = extractor.to_str(vec)
+ vec_obj = {'vec':vec_str, 'roi_index': roi_index, 'record_index':record_index}
+ vecs.append(vec_obj)
# -------------------------------------------------
# save data