summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv/face_vector.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/cv/face_vector.py')
-rw-r--r--megapixels/commands/cv/face_vector.py133
1 files changed, 0 insertions, 133 deletions
diff --git a/megapixels/commands/cv/face_vector.py b/megapixels/commands/cv/face_vector.py
deleted file mode 100644
index cb155d08..00000000
--- a/megapixels/commands/cv/face_vector.py
+++ /dev/null
@@ -1,133 +0,0 @@
-"""
-Converts ROIs to face vector
-NB: the VGG Face2 extractor should be used with MTCNN ROIs (not square)
- the DLIB face extractor should be used with DLIB ROIs (square)
-see https://github.com/ox-vgg/vgg_face2 for TAR@FAR
-"""
-
-import click
-
-from app.settings import types
-from app.utils import click_utils
-from app.settings import app_cfg as cfg
-
-@click.command()
-@click.option('-o', '--output', 'opt_fp_out', default=None,
- help='Override enum output filename CSV')
-@click.option('-m', '--media', 'opt_dir_media', default=None,
- help='Override enum media directory')
-@click.option('--store', 'opt_data_store',
- type=cfg.DataStoreVar,
- default=click_utils.get_default(types.DataStore.HDD),
- show_default=True,
- help=click_utils.show_help(types.Dataset))
-@click.option('--dataset', 'opt_dataset',
- type=cfg.DatasetVar,
- required=True,
- show_default=True,
- help=click_utils.show_help(types.Dataset))
-@click.option('--size', 'opt_size',
- type=(int, int), default=cfg.DEFAULT_SIZE_FACE_DETECT,
- help='Output image size')
-@click.option('-e', '--extractor', 'opt_extractor',
- default=click_utils.get_default(types.FaceExtractor.VGG),
- type=cfg.FaceExtractorVar,
- help='Type of extractor framework/network to use')
-@click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS,
- help='Number of jitters (only for dlib')
-@click.option('-p', '--padding', 'opt_padding', default=cfg.FACEREC_PADDING,
- help='Percentage ROI padding')
-@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
- help='Slice list of files')
-@click.option('-f', '--force', 'opt_force', is_flag=True,
- help='Force overwrite file')
-@click.option('-g', '--gpu', 'opt_gpu', default=0,
- help='GPU index')
-@click.pass_context
-def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
- opt_extractor, opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding):
- """Converts face ROIs to vectors"""
-
- import sys
- import os
- from os.path import join
- from pathlib import Path
- from glob import glob
-
- from tqdm import tqdm
- import numpy as np
- import dlib # must keep a local reference for dlib
- import cv2 as cv
- import pandas as pd
-
- from app.models.bbox import BBox
- from app.models.data_store import DataStore
- from app.utils import logger_utils, file_utils, im_utils
- from app.processors import face_extractor
-
-
- # -------------------------------------------------
- # init here
-
- log = logger_utils.Logger.getLogger()
- # set data_store
- data_store = DataStore(opt_data_store, opt_dataset)
-
- # get filepath out
- fp_out = data_store.metadata(types.Metadata.FACE_VECTOR) if opt_fp_out is None else opt_fp_out
- if not opt_force and Path(fp_out).exists():
- log.error('File exists. Use "-f / --force" to overwite')
- return
-
- # init face processors
- if opt_extractor == types.FaceExtractor.DLIB:
- log.debug('set dlib')
- extractor = face_extractor.ExtractorDLIB(gpu=opt_gpu, jitters=opt_jitters)
- elif opt_extractor == types.FaceExtractor.VGG:
- extractor = face_extractor.ExtractorVGG()
-
- # load data
- fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
- df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index')
- fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
- df_roi = pd.read_csv(fp_roi).set_index('index')
-
- if opt_slice:
- df_roi = df_roi[opt_slice[0]:opt_slice[1]]
-
- # -------------------------------------------------
- # process images
-
- df_img_groups = df_roi.groupby('record_index')
- log.debug('processing {:,} groups'.format(len(df_img_groups)))
-
- vecs = []
- for record_index, df_img_group in tqdm(df_img_groups):
- # make fp
- ds_record = df_record.iloc[record_index]
- fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
- im = cv.imread(fp_im)
- im = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
- for roi_index, df_img in df_img_group.iterrows():
- # get bbox
- x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h
- dim = (ds_record.width, ds_record.height)
- # get face vector
- bbox = BBox.from_xywh(x, y, w, h) # norm
- # compute vec
- vec = extractor.extract(im, bbox) # use normalized BBox
- vec_str = extractor.to_str(vec)
- vec_obj = {'vec':vec_str, 'roi_index': roi_index, 'record_index':record_index}
- vecs.append(vec_obj)
-
- # -------------------------------------------------
- # save data
-
- # create DataFrame and save to CSV
- df = pd.DataFrame.from_dict(vecs)
- df.index.name = 'index'
- file_utils.mkdirs(fp_out)
- df.to_csv(fp_out)
-
- # save script
- file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out)) \ No newline at end of file