summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv/face_3ddfa.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/cv/face_3ddfa.py')
-rw-r--r--megapixels/commands/cv/face_3ddfa.py331
1 files changed, 331 insertions, 0 deletions
diff --git a/megapixels/commands/cv/face_3ddfa.py b/megapixels/commands/cv/face_3ddfa.py
new file mode 100644
index 00000000..ffc74180
--- /dev/null
+++ b/megapixels/commands/cv/face_3ddfa.py
@@ -0,0 +1,331 @@
+import click
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
+ help='Image filepath')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='GIF output path')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_size, opt_force, opt_display):
+ """Face detector demo"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ from tqdm import tqdm
+ import numpy as np
+ import pandas as pd
+ import cv2 as cv
+ import dlib
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_age
+ from app.models.data_store import DataStore
+
+ # 3DDFA
+ # git clone https://github.com/cleardusk/3DDFA/ 3rdparty/
+
+ import torch
+ import torchvision.transforms as transforms
+ import mobilenet_v1
+ from utils.ddfa import ToTensorGjz, NormalizeGjz, str2bool
+ import scipy.io as sio
+ from utils.inference import get_suffix, parse_roi_box_from_landmark, crop_img, predict_68pts, dump_to_ply, dump_vertex, \
+ draw_landmarks, predict_dense, parse_roi_box_from_bbox, get_colors, write_obj_with_colors
+ from utils.cv_plot import plot_pose_box
+ from utils.estimate_pose import parse_pose
+ from utils.render import get_depths_image, cget_depths_image, cpncc
+ from utils.paf import gen_img_paf
+ import argparse
+ import torch.backends.cudnn as cudnn
+
+
+ log = logger_utils.Logger.getLogger()
+
+
+ # -------------------------------------------------
+ # load image
+
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+ else:
+ log.info(f'face detected: {bbox_dim.to_xyxy()}')
+
+
+ # ----------------------------------------------------------------------------
+ # age
+
+ age_apparent_predictor = face_age.FaceAgeApparent()
+ age_real_predictor = face_age.FaceAgeReal()
+
+ st = time.time()
+ age_real = age_real_predictor.age(im_resized, bbox_dim)
+ log.info(f'age real took: {(time.time()-st)/1000:.5f}s')
+ st = time.time()
+ age_apparent = age_apparent_predictor.age(im_resized, bbox_dim)
+ log.info(f'age apparent took: {(time.time()-st)/1000:.5f}s')
+
+
+ # ----------------------------------------------------------------------------
+ # output
+
+ log.info(f'Face coords: {bbox_dim} face')
+ log.info(f'Age (real): {(age_real):.2f}')
+ log.info(f'Age (apparent): {(age_apparent):.2f}')
+
+
+ # ----------------------------------------------------------------------------
+ # draw
+
+ # draw real age
+ im_age_real = im_resized.copy()
+ draw_utils.draw_bbox(im_age_real, bbox_dim)
+ txt = f'{(age_real):.2f}'
+ draw_utils.draw_text(im_age_real, bbox_dim.pt_tl, txt)
+
+ # apparent
+ im_age_apparent = im_resized.copy()
+ draw_utils.draw_bbox(im_age_apparent, bbox_dim)
+ txt = f'{(age_apparent):.2f}'
+ draw_utils.draw_text(im_age_apparent, bbox_dim.pt_tl, txt)
+
+
+ # ----------------------------------------------------------------------------
+ # save
+
+ if opt_fp_out:
+ # save pose only
+ fpp_out = Path(opt_fp_out)
+
+ fp_out = join(fpp_out.parent, f'{fpp_out.stem}_real{fpp_out.suffix}')
+ cv.imwrite(fp_out, im_age_real)
+
+ fp_out = join(fpp_out.parent, f'{fpp_out.stem}_apparent{fpp_out.suffix}')
+ cv.imwrite(fp_out, im_age_apparent)
+
+
+ # ----------------------------------------------------------------------------
+ # display
+
+ if opt_display:
+ # show all images here
+ cv.imshow('real', im_age_real)
+ cv.imshow('apparent', im_age_apparent)
+ display_utils.handle_keyboard()
+
+
+
+
+
+STD_SIZE = 120
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='3DDFA inference pipeline')
+ parser.add_argument('-f', '--files', nargs='+',
+ help='image files paths fed into network, single or multiple images')
+ parser.add_argument('-m', '--mode', default='cpu', type=str, help='gpu or cpu mode')
+ parser.add_argument('--show_flg', default='true', type=str2bool, help='whether show the visualization result')
+ parser.add_argument('--bbox_init', default='one', type=str,
+ help='one|two: one-step bbox initialization or two-step')
+ parser.add_argument('--dump_res', default='true', type=str2bool, help='whether write out the visualization image')
+ parser.add_argument('--dump_vertex', default='true', type=str2bool,
+ help='whether write out the dense face vertices to mat')
+ parser.add_argument('--dump_ply', default='true', type=str2bool)
+ parser.add_argument('--dump_pts', default='true', type=str2bool)
+ parser.add_argument('--dump_roi_box', default='true', type=str2bool)
+ parser.add_argument('--dump_pose', default='true', type=str2bool)
+ parser.add_argument('--dump_depth', default='true', type=str2bool)
+ parser.add_argument('--dump_pncc', default='true', type=str2bool)
+ parser.add_argument('--dump_paf', default='true', type=str2bool)
+ parser.add_argument('--paf_size', default=3, type=int, help='PAF feature kernel size')
+ parser.add_argument('--dump_obj', default='true', type=str2bool)
+ parser.add_argument('--dlib_bbox', default='true', type=str2bool, help='whether use dlib to predict bbox')
+ parser.add_argument('--dlib_landmark', default='true', type=str2bool,
+ help='whether use dlib landmark to crop image')
+
+ args = parser.parse_args()
+ main(args)
+
+
+
+def main(args):
+ # 1. load pre-tained model
+ checkpoint_fp = 'models/phase1_wpdc_vdc_v2.pth.tar'
+ arch = 'mobilenet_1'
+
+ checkpoint = torch.load(checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
+ model = getattr(mobilenet_v1, arch)(num_classes=62) # 62 = 12(pose) + 40(shape) +10(expression)
+ model_dict = model.state_dict()
+ # because the model is trained by multiple gpus, prefix module should be removed
+ for k in checkpoint.keys():
+ model_dict[k.replace('module.', '')] = checkpoint[k]
+ model.load_state_dict(model_dict, strict=False)
+ if args.mode == 'gpu':
+ cudnn.benchmark = True
+ model = model.cuda()
+ model.eval()
+
+ # 2. load dlib model for face detection and landmark used for face cropping
+ if args.dlib_landmark:
+ dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat'
+ face_regressor = dlib.shape_predictor(dlib_landmark_model)
+ if args.dlib_bbox:
+ face_detector = dlib.get_frontal_face_detector()
+
+ # 3. forward
+ tri = sio.loadmat('visualize/tri.mat')['tri']
+ transform = transforms.Compose([ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
+ for img_fp in args.files:
+ img_ori = cv2.imread(img_fp)
+ if args.dlib_bbox:
+ rects = face_detector(img_ori, 1)
+ else:
+ rects = []
+
+ if len(rects) == 0:
+ rects = dlib.rectangles()
+ rect_fp = img_fp + '.bbox'
+ lines = open(rect_fp).read().strip().split('\n')[1:]
+ for l in lines:
+ l, r, t, b = [int(_) for _ in l.split(' ')[1:]]
+ rect = dlib.rectangle(l, r, t, b)
+ rects.append(rect)
+
+ pts_res = []
+ Ps = [] # Camera matrix collection
+ poses = [] # pose collection, [todo: validate it]
+ vertices_lst = [] # store multiple face vertices
+ ind = 0
+ suffix = get_suffix(img_fp)
+ for rect in rects:
+ # whether use dlib landmark to crop image, if not, use only face bbox to calc roi bbox for cropping
+ if args.dlib_landmark:
+ # - use landmark for cropping
+ pts = face_regressor(img_ori, rect).parts()
+ pts = np.array([[pt.x, pt.y] for pt in pts]).T
+ roi_box = parse_roi_box_from_landmark(pts)
+ else:
+ # - use detected face bbox
+ bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
+ roi_box = parse_roi_box_from_bbox(bbox)
+
+ img = crop_img(img_ori, roi_box)
+
+ # forward: one step
+ img = cv2.resize(img, dsize=(STD_SIZE, STD_SIZE), interpolation=cv2.INTER_LINEAR)
+ input = transform(img).unsqueeze(0)
+ with torch.no_grad():
+ if args.mode == 'gpu':
+ input = input.cuda()
+ param = model(input)
+ param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
+
+ # 68 pts
+ pts68 = predict_68pts(param, roi_box)
+
+ # two-step for more accurate bbox to crop face
+ if args.bbox_init == 'two':
+ roi_box = parse_roi_box_from_landmark(pts68)
+ img_step2 = crop_img(img_ori, roi_box)
+ img_step2 = cv2.resize(img_step2, dsize=(STD_SIZE, STD_SIZE), interpolation=cv2.INTER_LINEAR)
+ input = transform(img_step2).unsqueeze(0)
+ with torch.no_grad():
+ if args.mode == 'gpu':
+ input = input.cuda()
+ param = model(input)
+ param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
+
+ pts68 = predict_68pts(param, roi_box)
+
+ pts_res.append(pts68)
+ P, pose = parse_pose(param)
+ Ps.append(P)
+ poses.append(pose)
+
+ # dense face 3d vertices
+ if args.dump_ply or args.dump_vertex or args.dump_depth or args.dump_pncc or args.dump_obj:
+ vertices = predict_dense(param, roi_box)
+ vertices_lst.append(vertices)
+ if args.dump_ply:
+ dump_to_ply(vertices, tri, '{}_{}.ply'.format(img_fp.replace(suffix, ''), ind))
+ if args.dump_vertex:
+ dump_vertex(vertices, '{}_{}.mat'.format(img_fp.replace(suffix, ''), ind))
+
+ # save .mat for 3d Face
+ wfp = '{}_{}_face3d.mat'.format(img_fp.replace(suffix, ''), ind)
+ colors = get_colors(img_ori, vertices)
+ sio.savemat(wfp, {'vertices': vertices, 'colors': colors, 'triangles': tri})
+
+ if args.dump_pts:
+ wfp = '{}_{}.txt'.format(img_fp.replace(suffix, ''), ind)
+ np.savetxt(wfp, pts68, fmt='%.3f')
+ print('Save 68 3d landmarks to {}'.format(wfp))
+ if args.dump_roi_box:
+ wfp = '{}_{}.roibox'.format(img_fp.replace(suffix, ''), ind)
+ np.savetxt(wfp, roi_box, fmt='%.3f')
+ print('Save roi box to {}'.format(wfp))
+ if args.dump_paf:
+ wfp_paf = '{}_{}_paf.jpg'.format(img_fp.replace(suffix, ''), ind)
+ wfp_crop = '{}_{}_crop.jpg'.format(img_fp.replace(suffix, ''), ind)
+ paf_feature = gen_img_paf(img_crop=img, param=param, kernel_size=args.paf_size)
+
+ cv2.imwrite(wfp_paf, paf_feature)
+ cv2.imwrite(wfp_crop, img)
+ print('Dump to {} and {}'.format(wfp_crop, wfp_paf))
+ if args.dump_obj:
+ wfp = '{}_{}.obj'.format(img_fp.replace(suffix, ''), ind)
+ colors = get_colors(img_ori, vertices)
+ write_obj_with_colors(wfp, vertices, tri, colors)
+ print('Dump obj with sampled texture to {}'.format(wfp))
+ ind += 1
+
+ if args.dump_pose:
+ # P, pose = parse_pose(param) # Camera matrix (without scale), and pose (yaw, pitch, roll, to verify)
+ img_pose = plot_pose_box(img_ori, Ps, pts_res)
+ wfp = img_fp.replace(suffix, '_pose.jpg')
+ cv2.imwrite(wfp, img_pose)
+ print('Dump to {}'.format(wfp))
+ if args.dump_depth:
+ wfp = img_fp.replace(suffix, '_depth.png')
+ # depths_img = get_depths_image(img_ori, vertices_lst, tri-1) # python version
+ depths_img = cget_depths_image(img_ori, vertices_lst, tri - 1) # cython version
+ cv2.imwrite(wfp, depths_img)
+ print('Dump to {}'.format(wfp))
+ if args.dump_pncc:
+ wfp = img_fp.replace(suffix, '_pncc.png')
+ pncc_feature = cpncc(img_ori, vertices_lst, tri - 1) # cython version
+ cv2.imwrite(wfp, pncc_feature[:, :, ::-1]) # cv2.imwrite will swap RGB -> BGR
+ print('Dump to {}'.format(wfp))
+ if args.dump_res:
+ draw_landmarks(img_ori, pts_res, wfp=img_fp.replace(suffix, '_3DDFA.jpg'), show_flg=args.show_flg)