summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv/embeddings.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/cv/embeddings.py')
-rw-r--r--megapixels/commands/cv/embeddings.py100
1 files changed, 0 insertions, 100 deletions
diff --git a/megapixels/commands/cv/embeddings.py b/megapixels/commands/cv/embeddings.py
deleted file mode 100644
index 9cb26ae7..00000000
--- a/megapixels/commands/cv/embeddings.py
+++ /dev/null
@@ -1,100 +0,0 @@
-"""
-Crop images to prepare for training
-"""
-
-import click
-
-from app.settings import types
-from app.utils import click_utils
-from app.settings import app_cfg as cfg
-
-@click.command()
-@click.option('-i', '--input', 'opt_fp_in', required=True,
- help='Input directory')
-@click.option('-r', '--records', 'opt_fp_records', required=True,
- help='Input directory')
-@click.option('-m', '--media', 'opt_fp_media', required=True,
- help='Image directory')
-@click.option('-o', '--output', 'opt_fp_out', required=True,
- help='Output CSV')
-@click.option('--size', 'opt_size',
- type=(int, int), default=(300, 300),
- help='Output image size')
-@click.option('-g', '--gpu', 'opt_gpu', default=0,
- help='GPU index')
-@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
- help='Slice list of files')
-@click.option('-f', '--force', 'opt_force', is_flag=True,
- help='Force overwrite file')
-@click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS,
- help='Number of jitters')
-@click.option('-p', '--padding', 'opt_padding', default=cfg.DLIB_FACEREC_PADDING,
- help='Percentage padding')
-@click.pass_context
-def cli(ctx, opt_fp_in, opt_fp_records, opt_fp_out, opt_fp_media, opt_size, opt_gpu,
- opt_slice, opt_jitters, opt_padding, opt_force):
- """Converts frames with faces to CSV of rows"""
-
- import sys
- import os
- from os.path import join
- from pathlib import Path
-
- from tqdm import tqdm
- import numpy as np
- import dlib # must keep a local reference for dlib
- import cv2 as cv
- import dlib
- import pandas as pd
-
- from app.utils import logger_utils, file_utils, im_utils
- from app.models.bbox import BBox
- from app.processors import face_recognition
-
- # -------------------------------------------------
- # init here
-
- log = logger_utils.Logger.getLogger()
-
- if not opt_force and Path(opt_fp_out).exists():
- log.error('File exists. Use "-f / --force" to overwite')
- return
-
- # init dlib FR
- facerec = face_recognition.RecognitionDLIB()
-
- # load data
- df_rois = pd.read_csv(opt_fp_in)
- df_records = pd.read_csv(opt_fp_records)
-
- if opt_slice:
- df_rois = df_rois[opt_slice[0]:opt_slice[1]]
- log.info('Processing {:,} rows'.format(len(df_rois)))
- nrows = len(df_rois)
-
- # face vecs
- vecs = []
-
- for roi_idx, row in tqdm(df_rois.iterrows(), total=nrows):
- # make image path
- record_id = int(row['id'])
- df = df_records.iloc[record_id]
- fp_im = join(opt_fp_media, df['subdir'], '{}.{}'.format(df['fn'], df['ext']))
- # load image
- im = cv.imread(fp_im)
- # make bbox
- xywh = [row['x'], row['y'], row['w'] , row['h']]
- bbox = BBox.from_xywh(*xywh)
- # scale to actual image size
- dim = (row['image_width'], row['image_height'])
- bbox_dim = bbox.to_dim(dim)
- # compute vec
- vec = facerec.vec(im, bbox_dim, jitters=opt_jitters, padding=opt_padding)
- vec_str = ','.join([repr(x) for x in vec])
- vecs.append( {'id': row['id'], 'vec': vec_str})
-
- # save data
- file_utils.mkdirs(opt_fp_out)
- df_vecs = pd.DataFrame.from_dict(vecs)
- df_vecs.to_csv(opt_fp_out, index=False)
- log.info('saved {:,} lines to {}'.format(len(df_vecs), opt_fp_out)) \ No newline at end of file