diff options
Diffstat (limited to 'megapixels/commands/cv/embeddings.py')
| -rw-r--r-- | megapixels/commands/cv/embeddings.py | 100 |
1 files changed, 0 insertions, 100 deletions
diff --git a/megapixels/commands/cv/embeddings.py b/megapixels/commands/cv/embeddings.py deleted file mode 100644 index 9cb26ae7..00000000 --- a/megapixels/commands/cv/embeddings.py +++ /dev/null @@ -1,100 +0,0 @@ -""" -Crop images to prepare for training -""" - -import click - -from app.settings import types -from app.utils import click_utils -from app.settings import app_cfg as cfg - -@click.command() -@click.option('-i', '--input', 'opt_fp_in', required=True, - help='Input directory') -@click.option('-r', '--records', 'opt_fp_records', required=True, - help='Input directory') -@click.option('-m', '--media', 'opt_fp_media', required=True, - help='Image directory') -@click.option('-o', '--output', 'opt_fp_out', required=True, - help='Output CSV') -@click.option('--size', 'opt_size', - type=(int, int), default=(300, 300), - help='Output image size') -@click.option('-g', '--gpu', 'opt_gpu', default=0, - help='GPU index') -@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), - help='Slice list of files') -@click.option('-f', '--force', 'opt_force', is_flag=True, - help='Force overwrite file') -@click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS, - help='Number of jitters') -@click.option('-p', '--padding', 'opt_padding', default=cfg.DLIB_FACEREC_PADDING, - help='Percentage padding') -@click.pass_context -def cli(ctx, opt_fp_in, opt_fp_records, opt_fp_out, opt_fp_media, opt_size, opt_gpu, - opt_slice, opt_jitters, opt_padding, opt_force): - """Converts frames with faces to CSV of rows""" - - import sys - import os - from os.path import join - from pathlib import Path - - from tqdm import tqdm - import numpy as np - import dlib # must keep a local reference for dlib - import cv2 as cv - import dlib - import pandas as pd - - from app.utils import logger_utils, file_utils, im_utils - from app.models.bbox import BBox - from app.processors import face_recognition - - # ------------------------------------------------- - # init here - - log = logger_utils.Logger.getLogger() - - if not opt_force and Path(opt_fp_out).exists(): - log.error('File exists. Use "-f / --force" to overwite') - return - - # init dlib FR - facerec = face_recognition.RecognitionDLIB() - - # load data - df_rois = pd.read_csv(opt_fp_in) - df_records = pd.read_csv(opt_fp_records) - - if opt_slice: - df_rois = df_rois[opt_slice[0]:opt_slice[1]] - log.info('Processing {:,} rows'.format(len(df_rois))) - nrows = len(df_rois) - - # face vecs - vecs = [] - - for roi_idx, row in tqdm(df_rois.iterrows(), total=nrows): - # make image path - record_id = int(row['id']) - df = df_records.iloc[record_id] - fp_im = join(opt_fp_media, df['subdir'], '{}.{}'.format(df['fn'], df['ext'])) - # load image - im = cv.imread(fp_im) - # make bbox - xywh = [row['x'], row['y'], row['w'] , row['h']] - bbox = BBox.from_xywh(*xywh) - # scale to actual image size - dim = (row['image_width'], row['image_height']) - bbox_dim = bbox.to_dim(dim) - # compute vec - vec = facerec.vec(im, bbox_dim, jitters=opt_jitters, padding=opt_padding) - vec_str = ','.join([repr(x) for x in vec]) - vecs.append( {'id': row['id'], 'vec': vec_str}) - - # save data - file_utils.mkdirs(opt_fp_out) - df_vecs = pd.DataFrame.from_dict(vecs) - df_vecs.to_csv(opt_fp_out, index=False) - log.info('saved {:,} lines to {}'.format(len(df_vecs), opt_fp_out))
\ No newline at end of file |
