summaryrefslogtreecommitdiff
path: root/megapixels/app
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/app')
-rw-r--r--megapixels/app/server/api.py1
-rw-r--r--megapixels/app/server/api_task.py40
-rw-r--r--megapixels/app/server/tasks/__init__.py19
-rw-r--r--megapixels/app/server/tasks/blur.py23
-rw-r--r--megapixels/app/server/tasks/fullmonte.py199
-rw-r--r--megapixels/app/utils/im_utils.py12
6 files changed, 245 insertions, 49 deletions
diff --git a/megapixels/app/server/api.py b/megapixels/app/server/api.py
index 48279040..663f52cc 100644
--- a/megapixels/app/server/api.py
+++ b/megapixels/app/server/api.py
@@ -30,7 +30,6 @@ def index():
"""List the datasets and their fields"""
return jsonify({ 'datasets': list_datasets() })
-
@api.route('/dataset/<dataset_name>')
def show(dataset_name):
"""Show the data that a dataset will return"""
diff --git a/megapixels/app/server/api_task.py b/megapixels/app/server/api_task.py
index 36990997..23e11454 100644
--- a/megapixels/app/server/api_task.py
+++ b/megapixels/app/server/api_task.py
@@ -6,30 +6,21 @@ import dlib
import simplejson as json
import numpy as np
from flask import Blueprint, request, jsonify
-from PIL import Image # todo: try to remove PIL dependency
-
-# from app.models.sql_factory import load_sql_datasets, list_datasets, get_dataset, get_table
-# from app.utils.im_utils import pil2np
+from PIL import Image, ImageOps # todo: try to remove PIL dependency
from celery.result import AsyncResult
from app.server.tasks import celery
from app.server.tasks import task_lookup, list_active_tasks
+# from app.models.sql_factory import load_sql_datasets, list_datasets, get_dataset, get_table
-api_task = Blueprint('api_task', __name__)
+api_task = Blueprint('task', __name__)
@api_task.route('/')
def index():
"""List active tasks"""
return jsonify(list_active_tasks)
-# from flask import render_template, redirect, url_for, send_from_directory
-# from flask import request, make_response, jsonify
-# from . import main, utils
-# from PIL import Image, ImageOps
-# import cv2 as cv
-# import imutils
-
-@api_task.route('/<task_name>/<task_id>')
+@api_task.route('/status/<task_name>/<task_id>')
def task_status(task_name, task_id):
"""Return celery image processing status"""
if task_name in task_lookup:
@@ -69,6 +60,9 @@ def task_status(task_name, task_id):
@api_task.route('/upload/sleep', methods=['GET', 'POST'])
def sleep_test():
+ """
+ Test the Celery system using a task that sleeps.
+ """
async_task = task_lookup['sleep']['task'].apply_async(args=['sleep_test'])
task_url = '/task/{}/{}'.format('sleep', async_task.id)
return jsonify({
@@ -76,10 +70,12 @@ def sleep_test():
'task_url': task_url,
})
-@api_task.route('/upload', methods=['POST'])
-def upload():
- style = request.form['style']
- print('style',style)
+@api_task.route('/upload/:style', methods=['POST'])
+def upload(style):
+ """
+ Process a images in a particular style
+ """
+ print('style: {}'.format(style))
if style in task_lookup:
task = task_lookup[style]['task']
print('task',task)
@@ -103,19 +99,19 @@ def upload():
# convert PNG to JPG
print('[+] Resizing image')
- # LOL MaskRCNN needs to be run outside of the Celery Task
im = Image.open(file.stream).convert('RGB')
- im = ImageOps.fit(im,(512,512))
+ im = ImageOps.fit(im, (256, 256))
# # Save image to disk
# print('[+] Save image to {}'.format(fpath))
# im.save(fpath, 'JPEG', quality=100)
# im_pil_256 = im.resize((256,256))
- print('[+] ensure_np...')
- im_np = imx.ensure_np(im_pil_256)
+ # print('[+] ensure_np...')
+ # im_np = imx.ensure_np(im_pil_256)
celery_result = {
+ im: im,
}
print('[+] Start celery')
@@ -124,6 +120,6 @@ def upload():
return jsonify({
'result': True,
- 'task_url': task_url,
+ 'taskURL': task_url,
'uuid': uuid_name
})
diff --git a/megapixels/app/server/tasks/__init__.py b/megapixels/app/server/tasks/__init__.py
index bac7309f..fd6e398a 100644
--- a/megapixels/app/server/tasks/__init__.py
+++ b/megapixels/app/server/tasks/__init__.py
@@ -5,7 +5,7 @@ from celery import Celery
celery = Celery(__name__, backend=cfg.CELERY_RESULT_BACKEND, broker=cfg.CELERY_BROKER_URL)
from app.server.tasks.sleep import sleep_task
-# from app.server.tasks.blur import blur_task
+from app.server.tasks.blur import blur_task
def list_active_tasks():
dropdown = {}
@@ -32,16 +32,15 @@ task_lookup = {
'active': True,
'default': True,
},
- # 'blur': {
- # 'title': 'Blur',
- # 'task': blur_task,
- # 'active': False,
- # },
- # 'task_dull': {
- # 'title': 'DullDream V2',
- # 'task': task_dull,
+ 'blur': {
+ 'title': 'Blur',
+ 'task': blur_task,
+ 'active': False,
+ },
+ # 'fullmonte': {
+ # 'title': 'TIA facial processing pipeline',
+ # 'task': fullmonte,
# 'active': True,
# 'default': True,
# }
}
-
diff --git a/megapixels/app/server/tasks/blur.py b/megapixels/app/server/tasks/blur.py
index ede75e6a..3b7e20be 100644
--- a/megapixels/app/server/tasks/blur.py
+++ b/megapixels/app/server/tasks/blur.py
@@ -3,14 +3,14 @@ import sys
import time
import datetime
import json
-from PIL import Image, ImageFilter
+from PIL import Image
import cv2 as cv
import numpy as np
-from . import main, utils
-from .. import basemodels
+from app.utils.im_utils import ensure_np, ensure_pil
from flask import current_app as app
-from .paths import get_paths
-celery = basemodels.celery
+
+from app.server.tasks import celery
+
from celery.utils.log import get_task_logger
celery_logger = get_task_logger(__name__)
import imutils
@@ -37,9 +37,9 @@ def blur_task(self, uuid_name, extra):
'uuid': uuid_name
})
- im_np = utils.ensure_np(im)
+ im_np = ensure_np(im)
im_blur = cv.blur(im_np, (5,5), 1.0)
- im_blur_pil = utils.ensure_pil(im_blur)
+ im_blur_pil = ensure_pil(im_blur)
fn = uuid_name + '_blur.jpg'
fpath = os.path.join(render_dir, fn)
@@ -55,15 +55,6 @@ def blur_task(self, uuid_name, extra):
self.update_state(
state = 'PROCESSING',
meta = {
- 'percent': 0.50,
- 'message': 'Sleeping for some reason',
- 'uuid': uuid_name
- })
- time.sleep(2)
-
- self.update_state(
- state = 'PROCESSING',
- meta = {
'percent': 0.75,
'message': 'Sleeping some more',
'uuid': uuid_name
diff --git a/megapixels/app/server/tasks/fullmonte.py b/megapixels/app/server/tasks/fullmonte.py
new file mode 100644
index 00000000..17ca9403
--- /dev/null
+++ b/megapixels/app/server/tasks/fullmonte.py
@@ -0,0 +1,199 @@
+
+import sys
+import os
+from os.path import join
+from pathlib import Path
+import time
+
+import numpy as np
+import cv2 as cv
+import dlib
+from PIL import Image
+import matplotlib.pyplot as plt
+
+from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+from app.utils import plot_utils
+from app.processors import face_detector, face_landmarks
+from app.models.data_store import DataStore
+
+@celery.task(bind=True)
+def fullmonte_task(self, uuid_name):
+ return
+
+ # TOOD add selective testing
+ opt_run_pose = True
+ opt_run_2d_68 = True
+ opt_run_3d_68 = True
+ opt_run_3d_68 = True
+
+ # -------------------------------------------------
+ # init here
+
+
+ log = logger_utils.Logger.getLogger()
+
+ # load image
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ log.info('detecting face...')
+ st = time.time()
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+ else:
+ log.info(f'Detected face in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # detect 3D landmarks
+
+ log.info('loading 3D landmark generator files...')
+ landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
+ log.info('generating 3D landmarks...')
+ st = time.time()
+ points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
+ log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 3D GIF animation
+
+ log.info('generating 3D animation...')
+ if not opt_fp_out:
+ fpp_im = Path(opt_fp_in)
+ fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
+ else:
+ fp_out = opt_fp_out
+ st = time.time()
+ plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
+ size=opt_gif_size, num_frames=opt_gif_frames)
+ log.info(f'Generated animation in {(time.time() - st):.2f}s')
+ log.info(f'Saved to: {fp_out}')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate face vectors, only to test if feature extraction works
+
+ log.info('initialize face recognition model...')
+ from app.processors import face_recognition
+ face_rec = face_recognition.RecognitionDLIB()
+ st = time.time()
+ log.info('generating face vector...')
+ vec = face_rec.vec(im_resized, bbox_dim)
+ log.info(f'generated face vector in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 68 point landmarks using dlib
+
+ log.info('initializing face landmarks 68 dlib...')
+ from app.processors import face_landmarks
+ landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ log.info('generating 2D 68PT landmarks...')
+ st = time.time()
+ points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ if opt_run_pose:
+ log.info('initialize pose...')
+ from app.processors import face_pose
+ pose_detector = face_pose.FacePoseDLIB()
+ log.info('generating pose...')
+ st = time.time()
+ pose_data = pose_detector.pose(points_2d_68, dim)
+ log.info(f'generated pose {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ # done
+ self.log.debug('Add age real')
+ self.log.debug('Add age apparent')
+ self.log.debug('Add gender')
+
+
+ # 3DDFA
+ self.log.debug('Add depth')
+ self.log.debug('Add pncc')
+
+ # TODO
+ self.log.debug('Add 3D face model')
+ self.log.debug('Add face texture flat')
+ self.log.debug('Add ethnicity')
+
+ # display
+ if opt_display:
+
+ # draw bbox
+
+ # draw 3d landmarks
+ im_landmarks_3d_68 = im_resized.copy()
+ draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
+ draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
+
+ # draw 2d landmarks
+ im_landmarks_2d_68 = im_resized.copy()
+ draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # draw pose
+ if opt_run_pose:
+ im_pose = im_resized.copy()
+ draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ draw_utils.draw_degrees(im_pose, pose_data)
+
+ # draw animated GIF
+ im = Image.open(fp_out)
+ im_frames = []
+ duration = im.info['duration']
+ try:
+ while True:
+ im.seek(len(im_frames))
+ mypalette = im.getpalette()
+ im.putpalette(mypalette)
+ im_jpg = Image.new("RGB", im.size)
+ im_jpg.paste(im)
+ im_np = im_utils.pil2np(im_jpg.copy())
+ im_frames.append(im_np)
+ except EOFError:
+ pass # end of GIF sequence
+
+ n_frames = len(im_frames)
+ frame_number = 0
+
+ while True:
+ # show all images here
+ cv.imshow('Original', im_resized)
+ cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
+ cv.imshow('Pose', im_pose)
+ cv.imshow('3D 68pt GIF', im_frames[frame_number])
+ frame_number = (frame_number + 1) % n_frames
+ k = cv.waitKey(duration) & 0xFF
+ if k == 27 or k == ord('q'): # ESC
+ cv.destroyAllWindows()
+ sys.exit()
+ elif k != 255:
+ # any key to continue
+ break \ No newline at end of file
diff --git a/megapixels/app/utils/im_utils.py b/megapixels/app/utils/im_utils.py
index e882c67f..d36c1c32 100644
--- a/megapixels/app/utils/im_utils.py
+++ b/megapixels/app/utils/im_utils.py
@@ -19,7 +19,19 @@ from torch.autograd import Variable
from sklearn.metrics.pairwise import cosine_similarity
import datetime
+def ensure_pil(im):
+ """Ensure image is Pillow format"""
+ try:
+ im.verify()
+ return im
+ except:
+ return Image.fromarray(im.astype('uint8'), 'RGB')
+def ensure_np(im):
+ """Ensure image is numpy array"""
+ if type(im) == np.ndarray:
+ return im
+ return np.asarray(im, np.uint8)
def num_channels(im):
'''Returns number of channels in numpy.ndarray image'''