summaryrefslogtreecommitdiff
path: root/megapixels/app/processors
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/app/processors')
-rw-r--r--megapixels/app/processors/face_detector.py48
-rw-r--r--megapixels/app/processors/face_pose.py148
-rw-r--r--megapixels/app/processors/face_recognition.py29
3 files changed, 115 insertions, 110 deletions
diff --git a/megapixels/app/processors/face_detector.py b/megapixels/app/processors/face_detector.py
index 593e9feb..3a90c557 100644
--- a/megapixels/app/processors/face_detector.py
+++ b/megapixels/app/processors/face_detector.py
@@ -24,15 +24,15 @@ class DetectorMTCNN:
from mtcnn.mtcnn import MTCNN
self.detector = MTCNN()
- def detect(self, im, opt_size=(400,400), opt_conf_thresh=None, opt_pyramids=None, opt_largest=False):
+ def detect(self, im, size=(400,400), conf_thresh=None, pyramids=None, largest=False):
'''Detects face using MTCNN and returns (list) of BBox
:param im: (numpy.ndarray) image
:returns list of BBox
'''
bboxes = []
- #conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- #pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
- dnn_size = self.dnn_size if opt_size is None else opt_size
+ #conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ #pyramids = self.pyramids if pyramids is None else pyramids
+ dnn_size = self.dnn_size if size is None else size
im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
dim = im.shape[:2][::-1]
@@ -43,7 +43,7 @@ class DetectorMTCNN:
bbox = BBox.from_xywh_dim(*rect, dim)
bboxes.append(bbox)
- if opt_largest and len(bboxes) > 1:
+ if largest and len(bboxes) > 1:
# only keep largest
bboxes.sort(key=operator.attrgetter('area'), reverse=True)
bboxes = [bboxes[0]]
@@ -70,34 +70,33 @@ class DetectorDLIBCNN:
pyramids = 0
conf_thresh = 0.85
- def __init__(self, opt_gpu=0):
+ def __init__(self, gpu=0):
import dlib
self.log = logger_utils.Logger.getLogger()
cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
- os.environ['CUDA_VISIBLE_DEVICES'] = str(opt_gpu)
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
self.log.info('load model: {}'.format(cfg.DIR_MODELS_DLIB_CNN))
self.detector = dlib.cnn_face_detection_model_v1(cfg.DIR_MODELS_DLIB_CNN)
os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None, opt_largest=False):
+ def detect(self, im, size=None, conf_thresh=None, pyramids=None, largest=False):
bboxes = []
- conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
- dnn_size = self.dnn_size if opt_size is None else opt_size
+ conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ pyramids = self.pyramids if pyramids is None else pyramids
+ dnn_size = self.dnn_size if size is None else size
# resize image
im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
dim = im.shape[:2][::-1]
im = im_utils.bgr2rgb(im) # convert to RGB for dlib
# run detector
- mmod_rects = self.detector(im, opt_pyramids)
+ mmod_rects = self.detector(im, pyramids)
# sort results
for mmod_rect in mmod_rects:
- self.log.debug('conf: {}, this: {}'.format(conf_thresh, mmod_rect.confidence))
if mmod_rect.confidence > conf_thresh:
bbox = BBox.from_dlib_dim(mmod_rect.rect, dim)
bboxes.append(bbox)
- if opt_largest and len(bboxes) > 1:
+ if largest and len(bboxes) > 1:
# only keep largest
bboxes.sort(key=operator.attrgetter('area'), reverse=True)
bboxes = [bboxes[0]]
@@ -116,25 +115,24 @@ class DetectorDLIBHOG:
self.log = logger_utils.Logger.getLogger()
self.detector = dlib.get_frontal_face_detector()
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=0, opt_largest=False):
- conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- dnn_size = self.size if opt_size is None else opt_size
- pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
+ def detect(self, im, size=None, conf_thresh=None, pyramids=0, largest=False):
+ conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ dnn_size = self.size if size is None else size
+ pyramids = self.pyramids if pyramids is None else pyramids
- im = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+ im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
dim = im.shape[:2][::-1]
im = im_utils.bgr2rgb(im) # ?
hog_results = self.detector.run(im, pyramids)
bboxes = []
if len(hog_results[0]) > 0:
- self.log.debug(hog_results)
for rect, score, direction in zip(*hog_results):
if score > conf_thresh:
bbox = BBox.from_dlib_dim(rect, dim)
bboxes.append(bbox)
- if opt_largest and len(bboxes) > 1:
+ if largest and len(bboxes) > 1:
# only keep largest
bboxes.sort(key=operator.attrgetter('area'), reverse=True)
bboxes = [bboxes[0]]
@@ -157,10 +155,10 @@ class DetectorCVDNN:
self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
self.net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_largest=False, opt_pyramids=None):
+ def detect(self, im, size=None, conf_thresh=None, largest=False, pyramids=None):
"""Detects faces and returns (list) of (BBox)"""
- conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- dnn_size = self.size if opt_size is None else opt_size
+ conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ dnn_size = self.size if size is None else size
im = cv.resize(im, dnn_size)
blob = cv.dnn.blobFromImage(im, self.dnn_scale, dnn_size, self.dnn_mean)
self.net.setInput(blob)
@@ -173,7 +171,7 @@ class DetectorCVDNN:
rect_norm = net_outputs[0, 0, i, 3:7]
bboxes.append(BBox(*rect_norm))
- if opt_largest and len(bboxes) > 1:
+ if largest and len(bboxes) > 1:
# only keep largest
bboxes.sort(key=operator.attrgetter('area'), reverse=True)
bboxes = [bboxes[0]]
diff --git a/megapixels/app/processors/face_pose.py b/megapixels/app/processors/face_pose.py
index 67ac685d..f2548b32 100644
--- a/megapixels/app/processors/face_pose.py
+++ b/megapixels/app/processors/face_pose.py
@@ -22,89 +22,83 @@ class FacePoseDLIB:
def __init__(self):
pass
- def pose(self, landmarks, dim):
- '''Calculates pose
- '''
- degrees = compute_pose_degrees(landmarks, dim)
- return degrees
+ def pose(self, landmarks, dim, project_points=False):
+ # computes pose using 6 / 68 points from dlib face landmarks
+ # based on learnopencv.com and
+ # https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/
+ # NB: not as accurate as MTCNN, see @jerryhouuu for ideas
+
+ pose_points_idx = (30, 8, 36, 45, 48, 54)
+ axis = np.float32([[500,0,0], [0,500,0], [0,0,500]])
+
+ # 3D model points.
+ model_points = np.array([
+ (0.0, 0.0, 0.0), # Nose tip
+ (0.0, -330.0, -65.0), # Chin
+ (-225.0, 170.0, -135.0), # Left eye left corner
+ (225.0, 170.0, -135.0), # Right eye right corne
+ (-150.0, -150.0, -125.0), # Left Mouth corner
+ (150.0, -150.0, -125.0) # Right mouth corner
+ ])
+
+ # Assuming no lens distortion
+ dist_coeffs = np.zeros((4,1))
-# -----------------------------------------------------------
-# utilities
-# -----------------------------------------------------------
+ # find 6 pose points
+ pose_points = []
+ for j, idx in enumerate(pose_points_idx):
+ pt = landmarks[idx]
+ pose_points.append((pt[0], pt[1]))
+ pose_points = np.array(pose_points, dtype='double') # convert to double
+
+ # create camera matrix
+ focal_length = dim[0]
+ center = (dim[0]/2, dim[1]/2)
+ cam_mat = np.array(
+ [[focal_length, 0, center[0]],
+ [0, focal_length, center[1]],
+ [0, 1, 1]], dtype = "double")
+
+ # solve PnP for rotation and translation
+ (success, rot_vec, tran_vec) = cv.solvePnP(model_points, pose_points,
+ cam_mat, dist_coeffs,
+ flags=cv.SOLVEPNP_ITERATIVE)
-def compute_pose_degrees(landmarks, dim):
- # computes pose using 6 / 68 points from dlib face landmarks
- # based on learnopencv.com and
- # https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/
- # NB: not as accurate as MTCNN, see @jerryhouuu for ideas
-
- pose_points_idx = (30, 8, 36, 45, 48, 54)
- axis = np.float32([[500,0,0], [0,500,0], [0,0,500]])
-
- # 3D model points.
- model_points = np.array([
- (0.0, 0.0, 0.0), # Nose tip
- (0.0, -330.0, -65.0), # Chin
- (-225.0, 170.0, -135.0), # Left eye left corner
- (225.0, 170.0, -135.0), # Right eye right corne
- (-150.0, -150.0, -125.0), # Left Mouth corner
- (150.0, -150.0, -125.0) # Right mouth corner
- ])
-
- # Assuming no lens distortion
- dist_coeffs = np.zeros((4,1))
+ result = {}
- # find 6 pose points
- pose_points = []
- for j, idx in enumerate(pose_points_idx):
- pt = landmarks[idx]
- pose_points.append((pt[0], pt[1]))
- pose_points = np.array(pose_points, dtype='double') # convert to double
-
- # create camera matrix
- focal_length = dim[0]
- center = (dim[0]/2, dim[1]/2)
- cam_mat = np.array(
- [[focal_length, 0, center[0]],
- [0, focal_length, center[1]],
- [0, 1, 1]], dtype = "double")
-
- # solve PnP for rotation and translation
- (success, rot_vec, tran_vec) = cv.solvePnP(model_points, pose_points,
- cam_mat, dist_coeffs,
- flags=cv.SOLVEPNP_ITERATIVE)
+ # project points
+ if project_points:
+ pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs)
+ pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs)
+ result['points_model'] = pts_model
+ result['points_image'] = pts_im
+ result['point_nose'] = tuple(landmarks[pose_points_idx[0]])
- # project points
- #pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs)
- #pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs)
- rvec_matrix = cv.Rodrigues(rot_vec)[0]
-
- # convert to degrees
- proj_matrix = np.hstack((rvec_matrix, tran_vec))
- eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6]
- pitch, yaw, roll = [math.radians(x) for x in eulerAngles]
- pitch = math.degrees(math.asin(math.sin(pitch)))
- roll = -math.degrees(math.asin(math.sin(roll)))
- yaw = math.degrees(math.asin(math.sin(yaw)))
- degrees = {'pitch': pitch, 'roll': roll, 'yaw': yaw}
-
- # add nose point
- #pt_nose = tuple(landmarks[pose_points_idx[0]])
- return degrees
- #return pts_im, pts_model, degrees, pt_nose
+ rvec_matrix = cv.Rodrigues(rot_vec)[0]
+
+ # convert to degrees
+ proj_matrix = np.hstack((rvec_matrix, tran_vec))
+ eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6]
+ pitch, yaw, roll = [math.radians(x) for x in eulerAngles]
+ pitch = math.degrees(math.asin(math.sin(pitch)))
+ roll = -math.degrees(math.asin(math.sin(roll)))
+ yaw = math.degrees(math.asin(math.sin(yaw)))
+ degrees = {'pitch': pitch, 'roll': roll, 'yaw': yaw}
+ result['degrees'] = degrees
+ return result
-def draw_pose(im, pts_im, pts_model, pt_nose):
- cv.line(im, pt_nose, tuple(pts_im[1].ravel()), (0,255,0), 3) #GREEN
- cv.line(im, pt_nose, tuple(pts_im[0].ravel()), (255,0,), 3) #BLUE
- cv.line(im, pt_nose, tuple(pts_im[2].ravel()), (0,0,255), 3) #RED
- return im
+ def draw_pose(self, im, pts_im, pts_model, pt_nose):
+ cv.line(im, pt_nose, tuple(pts_im[1].ravel()), (0,255,0), 3) #GREEN
+ cv.line(im, pt_nose, tuple(pts_im[0].ravel()), (255,0,), 3) #BLUE
+ cv.line(im, pt_nose, tuple(pts_im[2].ravel()), (0,0,255), 3) #RED
-def draw_degrees(im, degrees, color=(0,255,0)):
- for i, item in enumerate(degrees.items()):
- k, v = item
- t = '{}: {:.2f}'.format(k, v)
- origin = (10, 30 + (25 * i))
- cv.putText(im, t, origin, cv.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=2) \ No newline at end of file
+
+ def draw_degrees(self, im, degrees, color=(0,255,0)):
+ for i, item in enumerate(degrees.items()):
+ k, v = item
+ t = '{}: {:.2f}'.format(k, v)
+ origin = (10, 30 + (25 * i))
+ cv.putText(im, t, origin, cv.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=2) \ No newline at end of file
diff --git a/megapixels/app/processors/face_recognition.py b/megapixels/app/processors/face_recognition.py
index 9c3a301d..e0b9f752 100644
--- a/megapixels/app/processors/face_recognition.py
+++ b/megapixels/app/processors/face_recognition.py
@@ -17,25 +17,38 @@ class RecognitionDLIB:
# https://github.com/davisking/dlib/blob/master/python_examples/face_recognition.py
# facerec.compute_face_descriptor(img, shape, 100, 0.25)
- def __init__(self, opt_gpu=0):
+ def __init__(self, gpu=0):
self.log = logger_utils.Logger.getLogger()
- if opt_gpu > 0:
+
+ if gpu > -1:
cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
- os.environ['CUDA_VISIBLE_DEVICES'] = str(opt_gpu)
- self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_5PT)
- self.facerec = dlib.face_recognition_model_v1(cfg.DIR_MODELS_DLIB_FACEREC_RESNET)
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
+
+ self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_5PT)
+ self.facerec = dlib.face_recognition_model_v1(cfg.DIR_MODELS_DLIB_FACEREC_RESNET)
+
+ if gpu > -1:
os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset GPU env
+
def vec(self, im, bbox, width=100,
- jitters=cfg.DLIB_FACEREC_JITTERS, padding=cfg.DLIB_FACEREC_PADDING):
+ jitters=cfg.DLIB_FACEREC_JITTERS, padding=cfg.DLIB_FACEREC_PADDING):
# Converts image and bbox into 128d vector
# scale the image so the face is always 100x100 pixels
+ #self.log.debug('compute scale')
scale = width / bbox.width
- im = cv.resize(im, (scale, scale), interploation=cv.INTER_LANCZOS4)
+ #im = cv.resize(im, (scale, scale), cv.INTER_LANCZOS4)
+ #self.log.debug('resize')
+ cv.resize(im, None, fx=scale, fy=scale, interpolation=cv.INTER_LANCZOS4)
+ #self.log.debug('to dlib')
bbox_dlib = bbox.to_dlib()
+ #self.log.debug('precitor')
face_shape = self.predictor(im, bbox_dlib)
- vec = self.facerec.compute_face_descriptor(im, face_shape, jitters, padding)
+ # vec = self.facerec.compute_face_descriptor(im, face_shape, jitters, padding)
+ #self.log.debug('vec')
+ vec = self.facerec.compute_face_descriptor(im, face_shape, jitters)
+ #vec = self.facerec.compute_face_descriptor(im, face_shape)
return vec