summaryrefslogtreecommitdiff
path: root/megapixels/app/processors/face_landmarks_2d.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/app/processors/face_landmarks_2d.py')
-rw-r--r--megapixels/app/processors/face_landmarks_2d.py87
1 files changed, 87 insertions, 0 deletions
diff --git a/megapixels/app/processors/face_landmarks_2d.py b/megapixels/app/processors/face_landmarks_2d.py
new file mode 100644
index 00000000..e8ce93c1
--- /dev/null
+++ b/megapixels/app/processors/face_landmarks_2d.py
@@ -0,0 +1,87 @@
+import os
+from os.path import join
+from pathlib import Path
+
+import cv2 as cv
+import numpy as np
+import imutils
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+from app.models.bbox import BBox
+
+class LandmarksFaceAlignment:
+
+ # Estimates 2D facial landmarks
+ import face_alignment
+
+ def __init__(self, gpu=0):
+ self.log = logger_utils.Logger.getLogger()
+ device = f'cuda:{gpu}' if gpu > -1 else 'cpu'
+ self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device=device, flip_input=True)
+
+ def landmarks(self, im, as_type=str):
+ '''Calculates the 3D facial landmarks
+ :param im: (numpy.ndarray) image
+ :param as_type: (str) or (list) type to return data
+ '''
+ preds = self.fa.get_landmarks(im)
+ # convert to comma separated ints
+ # storing data as "[1,2], [3,4]" is larger file size than storing as "1,2,3,4"
+ # storing a list object in Pandas seems to result in 30% larger CSV files
+ # TODO optimize this
+ preds_int = [list(map(int, x)) for x in preds[0]] # list of ints
+ if as_type is str:
+ return ','.join([','.join(list(map(str,[x,y]))) for x,y in preds_int])
+ else:
+ return preds_int
+
+
+class LandmarksDLIB:
+
+ def __init__(self):
+ # init dlib
+ import dlib
+ self.log = logger_utils.Logger.getLogger()
+ self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_68PT)
+
+ def landmarks(self, im, bbox):
+ # Draw high-confidence faces
+ dim = im.shape[:2][::-1]
+ bbox = bbox.to_dlib()
+ im_gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
+ landmarks = [[p.x, p.y] for p in self.predictor(im_gray, bbox).parts()]
+ return landmarks
+
+
+class LandmarksMTCNN:
+
+ # https://github.com/ipazc/mtcnn
+ # pip install mtcnn
+
+ dnn_size = (400, 400)
+
+ def __init__(self, size=(400,400)):
+ from mtcnn.mtcnn import MTCNN
+ self.detector = MTCNN()
+
+ def landmarks(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None):
+ '''Detects face using MTCNN and returns (list) of BBox
+ :param im: (numpy.ndarray) image
+ :returns list of BBox
+ '''
+ rois = []
+ dnn_size = self.dnn_size if opt_size is None else opt_size
+ im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
+ dim = im.shape[:2][::-1]
+
+ # run MTCNN
+ dets = self.detector.detect_faces(im)
+
+ for det in dets:
+ rect = det['box']
+ keypoints = det['keypoints'] # not using here. see 'face_landmarks.py'
+ bbox = BBox.from_xywh_dim(*rect, dim)
+ rois.append(bbox)
+ return rois \ No newline at end of file