summaryrefslogtreecommitdiff
path: root/megapixels/app/processors/face_detector.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/app/processors/face_detector.py')
-rw-r--r--megapixels/app/processors/face_detector.py48
1 files changed, 23 insertions, 25 deletions
diff --git a/megapixels/app/processors/face_detector.py b/megapixels/app/processors/face_detector.py
index 593e9feb..3a90c557 100644
--- a/megapixels/app/processors/face_detector.py
+++ b/megapixels/app/processors/face_detector.py
@@ -24,15 +24,15 @@ class DetectorMTCNN:
from mtcnn.mtcnn import MTCNN
self.detector = MTCNN()
- def detect(self, im, opt_size=(400,400), opt_conf_thresh=None, opt_pyramids=None, opt_largest=False):
+ def detect(self, im, size=(400,400), conf_thresh=None, pyramids=None, largest=False):
'''Detects face using MTCNN and returns (list) of BBox
:param im: (numpy.ndarray) image
:returns list of BBox
'''
bboxes = []
- #conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- #pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
- dnn_size = self.dnn_size if opt_size is None else opt_size
+ #conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ #pyramids = self.pyramids if pyramids is None else pyramids
+ dnn_size = self.dnn_size if size is None else size
im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
dim = im.shape[:2][::-1]
@@ -43,7 +43,7 @@ class DetectorMTCNN:
bbox = BBox.from_xywh_dim(*rect, dim)
bboxes.append(bbox)
- if opt_largest and len(bboxes) > 1:
+ if largest and len(bboxes) > 1:
# only keep largest
bboxes.sort(key=operator.attrgetter('area'), reverse=True)
bboxes = [bboxes[0]]
@@ -70,34 +70,33 @@ class DetectorDLIBCNN:
pyramids = 0
conf_thresh = 0.85
- def __init__(self, opt_gpu=0):
+ def __init__(self, gpu=0):
import dlib
self.log = logger_utils.Logger.getLogger()
cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
- os.environ['CUDA_VISIBLE_DEVICES'] = str(opt_gpu)
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
self.log.info('load model: {}'.format(cfg.DIR_MODELS_DLIB_CNN))
self.detector = dlib.cnn_face_detection_model_v1(cfg.DIR_MODELS_DLIB_CNN)
os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None, opt_largest=False):
+ def detect(self, im, size=None, conf_thresh=None, pyramids=None, largest=False):
bboxes = []
- conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
- dnn_size = self.dnn_size if opt_size is None else opt_size
+ conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ pyramids = self.pyramids if pyramids is None else pyramids
+ dnn_size = self.dnn_size if size is None else size
# resize image
im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
dim = im.shape[:2][::-1]
im = im_utils.bgr2rgb(im) # convert to RGB for dlib
# run detector
- mmod_rects = self.detector(im, opt_pyramids)
+ mmod_rects = self.detector(im, pyramids)
# sort results
for mmod_rect in mmod_rects:
- self.log.debug('conf: {}, this: {}'.format(conf_thresh, mmod_rect.confidence))
if mmod_rect.confidence > conf_thresh:
bbox = BBox.from_dlib_dim(mmod_rect.rect, dim)
bboxes.append(bbox)
- if opt_largest and len(bboxes) > 1:
+ if largest and len(bboxes) > 1:
# only keep largest
bboxes.sort(key=operator.attrgetter('area'), reverse=True)
bboxes = [bboxes[0]]
@@ -116,25 +115,24 @@ class DetectorDLIBHOG:
self.log = logger_utils.Logger.getLogger()
self.detector = dlib.get_frontal_face_detector()
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=0, opt_largest=False):
- conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- dnn_size = self.size if opt_size is None else opt_size
- pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
+ def detect(self, im, size=None, conf_thresh=None, pyramids=0, largest=False):
+ conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ dnn_size = self.size if size is None else size
+ pyramids = self.pyramids if pyramids is None else pyramids
- im = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+ im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
dim = im.shape[:2][::-1]
im = im_utils.bgr2rgb(im) # ?
hog_results = self.detector.run(im, pyramids)
bboxes = []
if len(hog_results[0]) > 0:
- self.log.debug(hog_results)
for rect, score, direction in zip(*hog_results):
if score > conf_thresh:
bbox = BBox.from_dlib_dim(rect, dim)
bboxes.append(bbox)
- if opt_largest and len(bboxes) > 1:
+ if largest and len(bboxes) > 1:
# only keep largest
bboxes.sort(key=operator.attrgetter('area'), reverse=True)
bboxes = [bboxes[0]]
@@ -157,10 +155,10 @@ class DetectorCVDNN:
self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
self.net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_largest=False, opt_pyramids=None):
+ def detect(self, im, size=None, conf_thresh=None, largest=False, pyramids=None):
"""Detects faces and returns (list) of (BBox)"""
- conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- dnn_size = self.size if opt_size is None else opt_size
+ conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ dnn_size = self.size if size is None else size
im = cv.resize(im, dnn_size)
blob = cv.dnn.blobFromImage(im, self.dnn_scale, dnn_size, self.dnn_mean)
self.net.setInput(blob)
@@ -173,7 +171,7 @@ class DetectorCVDNN:
rect_norm = net_outputs[0, 0, i, 3:7]
bboxes.append(BBox(*rect_norm))
- if opt_largest and len(bboxes) > 1:
+ if largest and len(bboxes) > 1:
# only keep largest
bboxes.sort(key=operator.attrgetter('area'), reverse=True)
bboxes = [bboxes[0]]