summaryrefslogtreecommitdiff
path: root/megapixels/app/models
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/app/models')
-rw-r--r--megapixels/app/models/bbox.py17
-rw-r--r--megapixels/app/models/dataset.py25
2 files changed, 32 insertions, 10 deletions
diff --git a/megapixels/app/models/bbox.py b/megapixels/app/models/bbox.py
index f1216698..f65f7373 100644
--- a/megapixels/app/models/bbox.py
+++ b/megapixels/app/models/bbox.py
@@ -1,4 +1,5 @@
import math
+import random
from dlib import rectangle as dlib_rectangle
import numpy as np
@@ -127,9 +128,23 @@ class BBox:
d = int(math.sqrt(math.pow(dcx, 2) + math.pow(dcy, 2)))
return d
+
# -----------------------------------------------------------------
# Modify
+ def jitter(self, amt):
+ '''Jitters BBox in x,y,w,h values. Used for face feature extraction
+ :param amt: (float) percentage of BBox for maximum translation
+ :returns (BBox)
+ '''
+ w = self._width + (self._width * random.uniform(-amt, amt))
+ h = self._height + (self._height * random.uniform(-amt, amt))
+ cx = self._cx + (self._cx * random.uniform(-amt, amt))
+ cy = self._cy + (self._cy * random.uniform(-amt, amt))
+ x1, y1 = np.clip((cx - w/2, cy - h/2), 0.0, 1.0)
+ x2, y2 = np.clip((cx + w/2, cy + h/2), 0.0, 1.0)
+ return BBox(x1, y1, x2, y2)
+
def expand(self, per):
"""Expands BBox by percentage
:param per: (float) percentage to expand 0.0 - 1.0
@@ -186,7 +201,7 @@ class BBox:
# print(adj)
r = np.add(np.array(r), adj)
- return BBox(*r)
+ return BBox(*r) # updats all BBox values
# -----------------------------------------------------------------
diff --git a/megapixels/app/models/dataset.py b/megapixels/app/models/dataset.py
index eb0109a7..bbef9ff5 100644
--- a/megapixels/app/models/dataset.py
+++ b/megapixels/app/models/dataset.py
@@ -44,6 +44,9 @@ class Dataset:
self.log.info(f'build face vector dict: {len(self._face_vectors)}')
# remove the face vector column, it can be several GB of memory
self._metadata[metadata_type].drop('vec', axis=1, inplace=True)
+ #n_dims = len(self._metadata[metadata_type].keys()) - 2
+ #drop_keys = [f'd{i}' for i in range(1,n_dims+1)]
+ #self._metadata[metadata_type].drop(drop_keys, axis=1, inplace=True)
else:
self.log.error(f'File not found: {fp_csv}. Exiting.')
sys.exit()
@@ -53,7 +56,7 @@ class Dataset:
fp_csv = self.data_store.metadata(metadata_type)
self.log.info(f'loading: {fp_csv}')
if Path(fp_csv).is_file():
- self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
+ self._metadata[metadata_type] = pd.read_csv(fp_csv, dtype={'fn':str}).set_index('index')
else:
self.log.error(f'File not found: {fp_csv}. Exiting.')
sys.exit()
@@ -142,33 +145,37 @@ class Dataset:
# find most similar feature vectors indexes
#match_idxs = self.similar(query_vec, n_results, threshold)
sim_scores = np.linalg.norm(np.array([query_vec]) - np.array(self._face_vectors), axis=1)
- match_idxs = np.argpartition(sim_scores, n_results)[:n_results]
+ match_idxs = np.argpartition(sim_scores, range(n_results))[:n_results]
+ df_vector = self._metadata[types.Metadata.FACE_VECTOR]
+ df_record = self._metadata[types.Metadata.FILE_RECORD]
+
for match_idx in match_idxs:
# get the corresponding face vector row
roi_index = self._face_vector_roi_idxs[match_idx]
- df_record = self._metadata[types.Metadata.FILE_RECORD]
- ds_record = df_record.iloc[roi_index]
+ record_idx = df_vector.iloc[roi_index].record_index
+ ds_record = df_record.iloc[record_idx]
self.log.debug(f'find match index: {match_idx}, --> roi_index: {roi_index}')
fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
s3_url = self.data_store_s3.face(ds_record.uuid)
image_record = ImageRecord(ds_record, fp_im, s3_url)
- #roi_index = self._face_vector_roi_idxs[match_idx]
- #image_record = self.roi_idx_to_record(roi_index)
image_records.append(image_record)
return image_records
# ----------------------------------------------------------------------
# utilities
- def df_vecs_to_dict(self, df):
+ def df_vecs_to_dict(self, df_vec):
# convert the DataFrame CSV to float list of vecs
- return [list(map(float,x.vec.split(','))) for x in df.itertuples()]
+ # n_dims = len(df_vec.keys()) - 2 # number of columns with 'd1, d2,...d256'
+ #return [[df[f'd{i}'] for i in range(1,n_dims+1)] for df_idx, df in df_vec.iterrows()]
+ # return [[df[f'd{i}'] for i in range(1,n_dims+1)] for df_idx, df in df_vec.iterrows()]
+ return [list(map(float, x.vec.split(','))) for x in df_vec.itertuples()]
def df_vec_roi_idxs_to_dict(self, df):
# convert the DataFrame CSV to float list of vecs
#return [x.roi_index for x in df.itertuples()]
- return [x.roi_index for x in df.itertuples()]
+ return [int(x.roi_index) for i,x in df.iterrows()]
def similar(self, query_vec, n_results):
'''Finds most similar N indices of query face vector