diff options
| -rw-r--r-- | client/faceAnalysis/faceAnalysis.actions.js | 2 | ||||
| -rw-r--r-- | client/faceAnalysis/faceAnalysis.result.js | 29 | ||||
| -rw-r--r-- | megapixels/app/server/tasks/demo.py | 72 |
3 files changed, 68 insertions, 35 deletions
diff --git a/client/faceAnalysis/faceAnalysis.actions.js b/client/faceAnalysis/faceAnalysis.actions.js index 2d372c1e..4a6fe6ed 100644 --- a/client/faceAnalysis/faceAnalysis.actions.js +++ b/client/faceAnalysis/faceAnalysis.actions.js @@ -81,7 +81,7 @@ export const upload = (payload, file) => dispatch => { post(url.upload(), fd) .then(data => { // console.log('loaded!', tag, data) - dispatch(polled(tag, data)) + dispatch(loaded(tag, data)) const { result, taskURL } = data if (result && taskURL) { poll(payload, taskURL)(dispatch) diff --git a/client/faceAnalysis/faceAnalysis.result.js b/client/faceAnalysis/faceAnalysis.result.js index 1c8a2ffb..e7a4c6de 100644 --- a/client/faceAnalysis/faceAnalysis.result.js +++ b/client/faceAnalysis/faceAnalysis.result.js @@ -66,7 +66,6 @@ class FaceAnalysisResult extends Component { console.log(data.data) const results = [ 'blur_fn', 'points_3d_68', 'landmarks_3d_68', 'landmarks_2d_68', 'pose', - 'age_real', 'age_apparent', 'gender' ].map(tag => { if (tag in data.data) { const { title, url } = data.data[tag] @@ -80,14 +79,38 @@ class FaceAnalysisResult extends Component { return null }).filter(a => a) + const statisticsLabels = ['Age (Real)', 'Age (Apparent)', 'Gender', 'Beauty score', 'Emotion'] + const statistics = [ + 'age_real', 'age_apparent', 'gender', 'beauty', 'emotion' + ].map((tag, i) => { + if (tag in data.data.statistics) { + return ( + <tr key={tag}> + <td> + {statisticsLabels[i]} + </td> + <td> + {data.data.statistics[tag]} + </td> + </tr> + ) + } + return null + }).filter(a => a) + return ( <div> - {!(step && total && message) ? '' : (<span>Step {step} / {total}: {message}</span>)} <div className='results'> {results} </div> + {!!statistics.length && ( + <table> + {statistics} + </table> + )} <div className="about"> - <small>Query took {(timing / 1000).toFixed(2)} s.</small> + <small>Step {step} / {total} {message}</small> + <small>Query {step === total ? 'took' : 'timer:'} {(timing / 1000).toFixed(2)} s.</small> </div> </div> ) diff --git a/megapixels/app/server/tasks/demo.py b/megapixels/app/server/tasks/demo.py index 5143dd56..c27b08b5 100644 --- a/megapixels/app/server/tasks/demo.py +++ b/megapixels/app/server/tasks/demo.py @@ -24,7 +24,8 @@ def demo_task(self, uuid_name, fn): from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils from app.utils import plot_utils - from app.processors import face_detector, face_landmarks, face_age_gender + from app.processors import face_detector, face_landmarks, face_age_gender, face_beauty + # , face_emotion from app.models.data_store import DataStore # TODO add selective testing @@ -39,16 +40,16 @@ def demo_task(self, uuid_name, fn): meta = { 'step': 0, - 'total': 3, + 'total': 10, 'message': 'Starting', 'uuid': uuid_name, - 'data': {}, + 'data': { 'statistics': {} }, } paths = [] - def step(msg, step=0): - meta['step'] += step + def step(msg, step=1): meta['message'] = msg + meta['step'] += step log.debug('> {}'.format(msg)) self.update_state(state='PROCESSING', meta=meta) @@ -178,56 +179,65 @@ def demo_task(self, uuid_name, fn): # age # real + step('Running age predictor') age_real_predictor = face_age_gender.FaceAgeReal() st = time.time() age_real = age_real_predictor.predict(im_resized, bbox_dim) log.info(f'age real took: {(time.time()-st)/1000:.5f}s') + meta['data']['statistics']['age_real'] = f'{(age_real):.2f}' # apparent age_apparent_predictor = face_age_gender.FaceAgeApparent() st = time.time() age_apparent = age_apparent_predictor.predict(im_resized, bbox_dim) log.info(f'age apparent took: {(time.time()-st)/1000:.5f}s') + meta['data']['statistics']['age_apparent'] = f'{(age_apparent):.2f}' # gender + step('Running gender predictor') gender_predictor = face_age_gender.FaceGender() st = time.time() gender = gender_predictor.predict(im_resized, bbox_dim) log.info(f'gender took: {(time.time()-st)/1000:.5f}s') + meta['data']['statistics']['gender'] = f"M: {gender['m']:.2f}, F: {gender['f']:.2f}" - # ---------------------------------------------------------------------------- - # output - - log.info(f'Face coords: {bbox_dim} face') - log.info(f'Age (real): {(age_real):.2f}') - log.info(f'Age (apparent): {(age_apparent):.2f}') - log.info(f'gender: {gender}') + # # ---------------------------------------------------------------------------- + # # emotion + + # emotion_predictor = face_emotion.FaceEmotion(gpu=opt_gpu) + # emotion_score = emotion_predictor.emotion(im_resized, bbox_dim) + # log.info(f'emotion score: {(100*emotion_score):.2f}') + + # im_emotion = im_resized.copy() + # draw_utils.draw_bbox(im_emotion, bbox_dim) + # txt = f'emotion score: {(100*emotion_score):.2f}' + # draw_utils.draw_text(im_emotion, bbox_dim.pt_tl, txt) + # save_image('emotion', 'Emotion', im_emotion) # ---------------------------------------------------------------------------- - # draw + # beauty - # draw real age - im_age_real = im_resized.copy() - draw_utils.draw_bbox(im_age_real, bbox_dim) - txt = f'{(age_real):.2f}' - draw_utils.draw_text(im_age_real, bbox_dim.pt_tl, txt) + # TODO fix Keras CPU/GPU device selection issue + # NB: GPU visibility issues with dlib/keras + # Wrap this with cuda toggle and run before init dlib GPU - # apparent age - im_age_apparent = im_resized.copy() - draw_utils.draw_bbox(im_age_apparent, bbox_dim) - txt = f'{(age_apparent):.2f}' - draw_utils.draw_text(im_age_apparent, bbox_dim.pt_tl, txt) + step('Running beauty predictor') + device_cur = os.getenv('CUDA_VISIBLE_DEVICES', '') + os.environ['CUDA_VISIBLE_DEVICES'] = '' + beauty_predictor = face_beauty.FaceBeauty() + os.environ['CUDA_VISIBLE_DEVICES'] = device_cur - # gender - im_gender = im_resized.copy() - draw_utils.draw_bbox(im_age_apparent, bbox_dim) - txt = f"M: {gender['m']:.2f}, F: {gender['f']:.2f}" - draw_utils.draw_text(im_gender, (10, dim[1]-20), txt) + beauty_score = beauty_predictor.beauty(im_resized, bbox_dim) + log.info(f'beauty score: {(100*beauty_score):.2f}') - save_image('age_real', 'Age (Real)', im_age_real) - save_image('age_apparent', 'Age (Apparent)', im_age_apparent) - save_image('gender', 'Gender', im_gender) + # # draw 2d landmarks + # im_beauty = im_resized.copy() + # draw_utils.draw_bbox(im_beauty, bbox_dim) + # txt = f'Beauty score: {(100*beauty_score):.2f}' + # draw_utils.draw_text(im_beauty, bbox_dim.pt_tl, txt) + # save_image('beauty', 'Beauty', im_beauty) + meta['data']['statistics']['beauty'] = f'{(100*beauty_score):.2f}' step('Done') |
