summaryrefslogtreecommitdiff
path: root/site/public/research/01_from_1_to_100_pixels
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2019-05-03 15:14:31 +0200
committerJules Laplace <julescarbon@gmail.com>2019-05-03 15:14:31 +0200
commitf7b1c28108143eaf99df37c2bb5d8e711733b40e (patch)
treee6044852990141dd2302919a2e1401ac70c50702 /site/public/research/01_from_1_to_100_pixels
parent5d61d4c7122c936f470dfeab5a9802f4708aec7f (diff)
parentbee8715f5cbdfe40211b1b45426590f235176926 (diff)
Merge branch 'master' of github.com:adamhrv/megapixels_dev
Diffstat (limited to 'site/public/research/01_from_1_to_100_pixels')
-rw-r--r--site/public/research/01_from_1_to_100_pixels/index.html4
1 files changed, 4 insertions, 0 deletions
diff --git a/site/public/research/01_from_1_to_100_pixels/index.html b/site/public/research/01_from_1_to_100_pixels/index.html
index 7b86f5ef..cc9d3f94 100644
--- a/site/public/research/01_from_1_to_100_pixels/index.html
+++ b/site/public/research/01_from_1_to_100_pixels/index.html
@@ -92,6 +92,10 @@
<li>100x100 all you need for medical diagnosis</li>
<li>100x100 0.5% of one Instagram photo</li>
</ul>
+<p>Notes:</p>
+<ul>
+<li>Google FaceNet used images with (face?) sizes: Input sizes range from 96x96 pixels to 224x224pixels in our experiments. FaceNet: A Unified Embedding for Face Recognition and Clustering <a href="https://arxiv.org/pdf/1503.03832.pdf">https://arxiv.org/pdf/1503.03832.pdf</a></li>
+</ul>
<p>Ideas:</p>
<ul>
<li>Find specific cases of facial resolution being used in legal cases, forensic investigations, or military footage</li>