diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2019-04-19 16:27:50 +0200 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2019-04-19 16:27:50 +0200 |
| commit | 4746c261f2b85f36742e9271feb9fc1f951b2379 (patch) | |
| tree | 19ec3ade2380ecb127d947b4d07843a008d58ff7 /site/public/datasets/msceleb | |
| parent | 124a00e14d22bff52d11926143affe0ef5e6171a (diff) | |
copy edit;
Diffstat (limited to 'site/public/datasets/msceleb')
| -rw-r--r-- | site/public/datasets/msceleb/index.html | 22 |
1 files changed, 11 insertions, 11 deletions
diff --git a/site/public/datasets/msceleb/index.html b/site/public/datasets/msceleb/index.html index 07f50866..f9c184c8 100644 --- a/site/public/datasets/msceleb/index.html +++ b/site/public/datasets/msceleb/index.html @@ -57,10 +57,10 @@ </div><div class='meta'> <div class='gray'>Website</div> <div><a href='http://www.msceleb.org/' target='_blank' rel='nofollow noopener'>msceleb.org</a></div> - </div></div><p>Microsoft Celeb (MS Celeb) is a dataset of 10 million face images scraped from the Internet and used for research and development of large-scale biometric recognition systems. According to Microsoft Research who created and published the <a href="https://www.microsoft.com/en-us/research/publication/ms-celeb-1m-dataset-benchmark-large-scale-face-recognition-2/">dataset</a> in 2016, MS Celeb is the largest publicly available face recognition dataset in the world, containing over 10 million images of nearly 100,000 individuals. Microsoft's goal in building this dataset was to distribute an initial training dataset of 100,000 individuals images and use this to accelerate research into recognizing a target list of one million people from their face images "using all the possibly collected face images of this individual on the web as training data".<a class="footnote_shim" name="[^msceleb_orig]_1"> </a><a href="#[^msceleb_orig]" class="footnote" title="Footnote 1">1</a></p> -<p>These one million people, defined by Microsoft Research as "celebrities", are often merely people who must maintain an online presence for their professional lives. Microsoft's list of 1 million people is an expansive exploitation of the current reality that for many people including academics, policy makers, writers, artists, and especially journalists maintaining an online presence is mandatory and should not allow Microsoft or anyone else to use their biometrics for research and development of surveillance technology. Many of names in the target list even include people critical of the very technology Microsoft is using their name and biometric information to build. The list includes digital rights activists like Jillian York; artists critical of surveillance including Trevor Paglen, Jill Magid, and Aram Bartholl; Intercept founders Laura Poitras, Jeremy Scahill, and Glen Greenwald; Data and Society founder danah boyd; and even Julie Brill the former FTC commissioner responsible for protecting consumer privacy to name a few.</p> + </div></div><p>Microsoft Celeb (MS Celeb) is a dataset of 10 million face images scraped from the internet and used for research and development of large-scale biometric recognition systems. According to Microsoft Research, who created and published the <a href="https://www.microsoft.com/en-us/research/publication/ms-celeb-1m-dataset-benchmark-large-scale-face-recognition-2/">dataset</a> in 2016, MS Celeb is the largest publicly available face recognition dataset in the world, containing over 10 million images of nearly 100,000 individuals. Microsoft's goal in building this dataset was to distribute an initial training dataset of 100,000 individuals' images, and to use this dataset to accelerate research into recognizing a larger target list of one million people "using all the possibly collected face images of this individual on the web as training data".<a class="footnote_shim" name="[^msceleb_orig]_1"> </a><a href="#[^msceleb_orig]" class="footnote" title="Footnote 1">1</a></p> +<p>These one million people, defined by Microsoft Research as "celebrities", are often merely people who must maintain an online presence for their professional lives. Microsoft's list of 1 million people is an expansive exploitation of the current reality that for many people, including academics, policy makers, writers, artists, and especially journalists, maintaining an online presence is mandatory. This fact should not allow Microsoft or anyone else to use their biometrics for research and development of surveillance technology. Many names in the target list even include people critical of the very technology Microsoft is using their name and biometric information to build. The list includes digital rights activists like Jillian York; artists critical of surveillance including Trevor Paglen, Jill Magid, and Aram Bartholl; Intercept founders Laura Poitras, Jeremy Scahill, and Glenn Greenwald; Data and Society founder danah boyd; and even Julie Brill, the former FTC commissioner responsible for protecting consumer privacy, to name a few.</p> <h3>Microsoft's 1 Million Target List</h3> -<p>Below is a selection of names from the full target list, curated to illustrate Microsoft's expansive and exploitative practice of scraping the Internet for biometric training data. The entire name file can be downloaded from <a href="https://msceleb.org">msceleb.org</a>. You can email <a href="mailto:msceleb@microsoft.com?subject=MS-Celeb-1M Removal Request&body=Dear%20Microsoft%2C%0A%0AI%20recently%20discovered%20that%20you%20use%20my%20identity%20for%20commercial%20use%20in%20your%20MS-Celeb-1M%20dataset%20used%20for%20research%20and%20development%20of%20face%20recognition.%20I%20do%20not%20wish%20to%20be%20included%20in%20your%20dataset%20in%20any%20format.%20%0A%0APlease%20remove%20my%20name%20and%2For%20any%20associated%20images%20immediately%20and%20send%20a%20confirmation%20once%20you've%20updated%20your%20%22Top1M_MidList.Name.tsv%22%20file.%0A%0AThanks%20for%20promptly%20handing%20this%2C%0A%5B%20your%20name%20%5D">msceleb@microsoft.com</a> to have your name removed. Names appearing with * indicate that Microsoft also distributed images.</p> +<p>Below is a selection of names from the full target list, curated to illustrate Microsoft's expansive and exploitative practice of scraping the Internet for biometric training data. The entire name file can be downloaded from <a href="https://www.msceleb.org">msceleb.org</a>. You can email <a href="mailto:msceleb@microsoft.com?subject=MS-Celeb-1M Removal Request&body=Dear%20Microsoft%2C%0A%0AI%20recently%20discovered%20that%20you%20use%20my%20identity%20for%20commercial%20use%20in%20your%20MS-Celeb-1M%20dataset%20used%20for%20research%20and%20development%20of%20face%20recognition.%20I%20do%20not%20wish%20to%20be%20included%20in%20your%20dataset%20in%20any%20format.%20%0A%0APlease%20remove%20my%20name%20and%2For%20any%20associated%20images%20immediately%20and%20send%20a%20confirmation%20once%20you've%20updated%20your%20%22Top1M_MidList.Name.tsv%22%20file.%0A%0AThanks%20for%20promptly%20handing%20this%2C%0A%5B%20your%20name%20%5D">msceleb@microsoft.com</a> to have your name removed. Names appearing with * indicate that Microsoft also distributed images.</p> </section><section><div class='columns columns-2'><div class='column'><table> <thead><tr> <th>Name</th> @@ -86,7 +86,7 @@ </tr> <tr> <td>Alexander Madrigal</td> -<td>Journlist</td> +<td>Journalist</td> </tr> <tr> <td>Bruce Schneier*</td> @@ -105,11 +105,11 @@ <td>Tech writer, researcher</td> </tr> <tr> -<td>Glen Greenwald*</td> +<td>Glenn Greenwald*</td> <td>Journalist, author</td> </tr> <tr> -<td>Hito Steryl</td> +<td>Hito Steyerl</td> <td>Artist, writer</td> </tr> </tbody> @@ -168,14 +168,14 @@ </tbody> </table> </div></div></section><section><p>After publishing this list, researchers from Microsoft Asia then worked with researchers affiliated with China's National University of Defense Technology (controlled by China's Central Military Commission) and used the the MS Celeb dataset for their <a href="https://www.semanticscholar.org/paper/Faces-as-Lighting-Probes-via-Unsupervised-Deep-Yi-Zhu/b301fd2fc33f24d6f75224e7c0991f4f04b64a65">research paper</a> on using "Faces as Lighting Probes via Unsupervised Deep Highlight Extraction" with potential applications in 3D face recognition.</p> -<p>In an <a href="https://www.ft.com/content/9378e7ee-5ae6-11e9-9dde-7aedca0a081a">article</a> published by Financial Times based on data surfaced during this investigation, Samm Sacks (a senior fellow at New America think tank) commented that this research raised "red flags because of the nature of the technology, the author's affiliations, combined with what we know about how this technology is being deployed in China right now". Adding, that "the [Chinese] government is using these technologies to build surveillance systems and to detain minorities [in Xinjiang]".<a class="footnote_shim" name="[^madhu_ft]_1"> </a><a href="#[^madhu_ft]" class="footnote" title="Footnote 2">2</a></p> -<p>Four more papers published by SenseTime which also use the MS Celeb dataset raise similar flags. SenseTime is a computer vision surveillance company who until <a href="https://uhrp.org/news-commentary/china%E2%80%99s-sensetime-sells-out-xinjiang-security-joint-venture">April 2019</a> provided surveillance to Chinese authorities to monitor and track Uighur Muslims in Xinjiang province and had been <a href="https://www.nytimes.com/2019/04/14/technology/china-surveillance-artificial-intelligence-racial-profiling.html">flagged</a> numerous times as having potential links to human rights violations.</p> +<p>In an <a href="https://www.ft.com/content/9378e7ee-5ae6-11e9-9dde-7aedca0a081a">article</a> published by Financial Times based on data surfaced during this investigation, Samm Sacks (a senior fellow at the New America think tank) commented that this research raised "red flags because of the nature of the technology, the author's affiliations, combined with what we know about how this technology is being deployed in China right now". Adding, that "the [Chinese] government is using these technologies to build surveillance systems and to detain minorities [in Xinjiang]".<a class="footnote_shim" name="[^madhu_ft]_1"> </a><a href="#[^madhu_ft]" class="footnote" title="Footnote 2">2</a></p> +<p>Four more papers published by SenseTime, which also use the MS Celeb dataset, raise similar flags. SenseTime is a computer vision surveillance company that until <a href="https://uhrp.org/news-commentary/china%E2%80%99s-sensetime-sells-out-xinjiang-security-joint-venture">April 2019</a> provided surveillance to Chinese authorities to monitor and track Uighur Muslims in Xinjiang province, and had been <a href="https://www.nytimes.com/2019/04/14/technology/china-surveillance-artificial-intelligence-racial-profiling.html">flagged</a> numerous times as having potential links to human rights violations.</p> <p>One of the 4 SenseTime papers, "<a href="https://www.semanticscholar.org/paper/Exploring-Disentangled-Feature-Representation-Face-Liu-Wei/1fd5d08394a3278ef0a89639e9bfec7cb482e0bf">Exploring Disentangled Feature Representation Beyond Face Identification</a>", shows how SenseTime was developing automated face analysis technology to infer race, narrow eyes, nose size, and chin size, all of which could be used to target vulnerable ethnic groups based on their facial appearances.</p> -<p>Earlier in 2019, Microsoft CEO <a href="https://blogs.microsoft.com/on-the-issues/2018/12/06/facial-recognition-its-time-for-action/">Brad Smith</a> called for the governmental regulation of face recognition citing the potential for misuse, a rare admission that Microsoft's surveillance-driven business model had lost its bearing. More recently Smith also <a href="https://www.reuters.com/article/us-microsoft-ai/microsoft-turned-down-facial-recognition-sales-on-human-rights-concerns-idUSKCN1RS2FV">announced</a> that Microsoft would seemingly take stand against such potential misuse and decided to not sell face recognition to an unnamed United States agency, citing a lack of accuracy made it not suitable to be used on minorities, because it was trained mostly on white male faces.</p> +<p>Earlier in 2019, Microsoft President and Chief Legal Officer <a href="https://blogs.microsoft.com/on-the-issues/2018/12/06/facial-recognition-its-time-for-action/">Brad Smith</a> called for the governmental regulation of face recognition, citing the potential for misuse, a rare admission that Microsoft's surveillance-driven business model had lost its bearing. More recently Smith also <a href="https://www.reuters.com/article/us-microsoft-ai/microsoft-turned-down-facial-recognition-sales-on-human-rights-concerns-idUSKCN1RS2FV">announced</a> that Microsoft would seemingly take a stand against such potential misuse, and had decided to not sell face recognition to an unnamed United States agency, citing a lack of accuracy. The software was not suitable to be used on minorities, because it was trained mostly on white male faces.</p> <p>What the decision to block the sale announces is not so much that Microsoft had upgraded their ethics, but that Microsoft publicly acknowledged it can't sell a data-driven product without data. In other words, Microsoft can't sell face recognition for faces they can't train on.</p> <p>Until now, that data has been freely harvested from the Internet and packaged in training sets like MS Celeb, which are overwhelmingly <a href="https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html">white</a> and <a href="https://gendershades.org">male</a>. Without balanced data, facial recognition contains blind spots. And without datasets like MS Celeb, the powerful yet inaccurate facial recognition services like Microsoft's Azure Cognitive Service also would not be able to see at all.</p> -</section><section class='images'><div class='image'><img src='https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/msceleb/assets/msceleb_montage.jpg' alt=' A visualization of 2,000 of the 100,000 identity included in the image dataset distributed by Microsoft Research. Credit: megapixels.cc. License: Open Data Commons Public Domain Dedication (PDDL)'><div class='caption'> A visualization of 2,000 of the 100,000 identity included in the image dataset distributed by Microsoft Research. Credit: megapixels.cc. License: Open Data Commons Public Domain Dedication (PDDL)</div></div></section><section><p>Microsoft didn't only create MS Celeb for other researchers to use, they also used it internally. In a publicly available 2017 Microsoft Research project called <a href="https://www.microsoft.com/en-us/research/publication/one-shot-face-recognition-promoting-underrepresented-classes/">One-shot Face Recognition by Promoting Underrepresented Classes</a>, Microsoft leveraged the MS Celeb dataset to analyze their algorithms and advertise the results. Interestingly, Microsoft's <a href="https://www.microsoft.com/en-us/research/publication/one-shot-face-recognition-promoting-underrepresented-classes/">corporate version</a> of the paper does not mention they used the MS Celeb datset, but the <a href="https://www.semanticscholar.org/paper/One-shot-Face-Recognition-by-Promoting-Classes-Guo/6cacda04a541d251e8221d70ac61fda88fb61a70">open-access version</a> published on arxiv.org explicitly mentions that Microsoft Research introspected their algorithms "on the MS-Celeb-1M low-shot learning benchmark task."</p> -<p>We suggest that if Microsoft Research wants to make biometric data publicly available for surveillance research and development, they should start with releasing their researchers' own biometric data instead of scraping the Internet for journalists, artists, writers, actors, athletes, musicians, and academics.</p> +</section><section class='images'><div class='image'><img src='https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/msceleb/assets/msceleb_montage.jpg' alt=' A visualization of 2,000 of the 100,000 identity included in the image dataset distributed by Microsoft Research. Credit: megapixels.cc. License: Open Data Commons Public Domain Dedication (PDDL)'><div class='caption'> A visualization of 2,000 of the 100,000 identity included in the image dataset distributed by Microsoft Research. Credit: megapixels.cc. License: Open Data Commons Public Domain Dedication (PDDL)</div></div></section><section><p>Microsoft didn't only create MS Celeb for other researchers to use, they also used it internally. In a publicly available 2017 Microsoft Research project called "<a href="https://www.microsoft.com/en-us/research/publication/one-shot-face-recognition-promoting-underrepresented-classes/">One-shot Face Recognition by Promoting Underrepresented Classes</a>," Microsoft leveraged the MS Celeb dataset to analyze their algorithms and advertise the results. Interestingly, Microsoft's <a href="https://www.microsoft.com/en-us/research/publication/one-shot-face-recognition-promoting-underrepresented-classes/">corporate version</a> of the paper does not mention they used the MS Celeb datset, but the <a href="https://www.semanticscholar.org/paper/One-shot-Face-Recognition-by-Promoting-Classes-Guo/6cacda04a541d251e8221d70ac61fda88fb61a70">open-access version</a> published on arxiv.org explicitly mentions that Microsoft Research introspected their algorithms "on the MS-Celeb-1M low-shot learning benchmark task."</p> +<p>We suggest that if Microsoft Research wants to make biometric data publicly available for surveillance research and development, they should start with releasing their researchers' own biometric data, instead of scraping the Internet for journalists, artists, writers, actors, athletes, musicians, and academics.</p> </section><section> <h3>Who used Microsoft Celeb?</h3> |
