summaryrefslogtreecommitdiff
path: root/site/datasets/unknown/imdb_wiki.json
diff options
context:
space:
mode:
authorjules@lens <julescarbon@gmail.com>2019-02-18 13:53:18 +0100
committerjules@lens <julescarbon@gmail.com>2019-02-18 13:53:18 +0100
commit3fc5bb42b0dd94b56d0f11b1568d30a1ff835629 (patch)
tree0a56e7f9cb84bda15a6e3074d1eba8312cc058f5 /site/datasets/unknown/imdb_wiki.json
parentb28f65ad5016ba3c3c9f973bd2a64ea3c8a3f84c (diff)
rebuild everything
Diffstat (limited to 'site/datasets/unknown/imdb_wiki.json')
-rw-r--r--site/datasets/unknown/imdb_wiki.json2
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/unknown/imdb_wiki.json b/site/datasets/unknown/imdb_wiki.json
index f1e28131..ac0b4ab3 100644
--- a/site/datasets/unknown/imdb_wiki.json
+++ b/site/datasets/unknown/imdb_wiki.json
@@ -1 +1 @@
-{"id": "10195a163ab6348eef37213a46f60a3d87f289c5", "citations": [{"id": "3c4f6d24b55b1fd3c5b85c70308d544faef3f69a", "title": "A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.02952.pdf"]}, {"id": "f46a526c423dd09a3f14f2c9a3838fb4f56fa730", "title": "Anchored Regression Networks Applied to Age Estimation and Super Resolution", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Agustsson_Anchored_Regression_Networks_ICCV_2017_paper.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-ICCV-2017.pdf"]}, {"id": "380dd0ddd5d69adc52defc095570d1c22952f5cc", "title": "Improving Smiling Detection with Race and Gender Diversity", "year": "2017", "pdf": []}, {"id": "ec0104286c96707f57df26b4f0a4f49b774c486b", "title": "An Ensemble CNN2ELM for Age Estimation", "year": "2018", "pdf": ["http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-IEEE-TIFS-2018.pdf"]}, {"id": "d444368421f456baf8c3cb089244e017f8d32c41", "title": "CNN for IMU assisted odometry estimation using velodyne LiDAR", "year": "2018", "pdf": ["https://arxiv.org/pdf/1712.06352.pdf"]}, {"id": "fffefc1fb840da63e17428fd5de6e79feb726894", "title": "Fine-Grained Age Estimation in the wild with Attention LSTM Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10445.pdf"]}, {"id": "c9c2de3628be7e249722b12911bebad84b567ce6", "title": "Age and gender recognition in the wild with deep attention", "year": "2017", "pdf": []}, {"id": "305346d01298edeb5c6dc8b55679e8f60ba97efb", "title": "Fine-Grained Face Annotation Using Deep Multi-Task CNN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3053/46d01298edeb5c6dc8b55679e8f60ba97efb.pdf"]}, {"id": "9939498315777b40bed9150d8940fc1ac340e8ba", "title": "ChaLearn Looking at People and Faces of the World: Face AnalysisWorkshop and Challenge 2016", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Escalera_ChaLearn_Looking_at_CVPR_2016_paper.pdf"]}, {"id": "df7af280771a6c8302b75ed0a14ffe7854cca679", "title": "Prediction of users' facial attractiveness on an online dating website", "year": "2017", "pdf": []}, {"id": "ab3fcd9d5fbd2d0ad48fba4005899cf13e08d07e", "title": "Evaluating Automated Facial Age Estimation Techniques for Digital Forensics", "year": "2018", "pdf": ["https://forensicsandsecurity.com/papers/EvaluatingFacialAgeEstimation.pdf"]}, {"id": "8397956c7ad3bd24c6c6c0b38866e165367327c0", "title": "Social Relation Trait Discovery from Visual LifeLog Data with Facial Multi-Attribute Framework", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8397/956c7ad3bd24c6c6c0b38866e165367327c0.pdf"]}, {"id": "30b15cdb72760f20f80e04157b57be9029d8a1ab", "title": "Face Aging with Identity-Preserved Conditional Generative Adversarial Networks", "year": "", "pdf": ["https://pdfs.semanticscholar.org/30b1/5cdb72760f20f80e04157b57be9029d8a1ab.pdf"]}, {"id": "8a991beca5bc864bbc1e26df953fd1fbd4dcb4bd", "title": "Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age.", "year": "2018", "pdf": ["http://www.vision.ee.ethz.ch/~timofter/publications/Patcas-IJOMS-2018.pdf"]}, {"id": "50ff21e595e0ebe51ae808a2da3b7940549f4035", "title": "Age Group and Gender Estimation in the Wild With Deep RoR Architecture", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.02985.pdf"]}, {"id": "8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b", "title": "Learning from Longitudinal Face Demonstration - Where Tractable Deep Modeling Meets Inverse Reinforcement Learning", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.10520.pdf"]}, {"id": "0dd74bbda5dd3d9305636d4b6f0dad85d6e19572", "title": "Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.00906.pdf"]}, {"id": "92b61b09d2eed4937058d0f9494d9efeddc39002", "title": "BoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/92b6/1b09d2eed4937058d0f9494d9efeddc39002.pdf"]}, {"id": "2b632f090c09435d089ff76220fd31fd314838ae", "title": "Early Adaptation of Deep Priors in Age Prediction from Face Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Hajibabaei_Early_Adaptation_of_ICCV_2017_paper.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Hajibabaei-ICCVW-2017.pdf"]}, {"id": "36939e6a365e9db904d81325212177c9e9e76c54", "title": "Assessing the Accuracy of Four Popular Face Recognition Tools for Inferring Gender, Age, and Race", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/941b/5492e6ac98355fd7bc7531f846d638e814ac.pdf"]}, {"id": "d00787e215bd74d32d80a6c115c4789214da5edb", "title": "Faster and Lighter Online Sparse Dictionary Learning Project report", "year": "", "pdf": ["https://pdfs.semanticscholar.org/d007/87e215bd74d32d80a6c115c4789214da5edb.pdf"]}, {"id": "b8e5800dfc590f82a0f7eedefce9abebf8088d12", "title": "How to Train Your Neural Network with Dictionary Learning", "year": "2017", "pdf": []}, {"id": "775c15a5dfca426d53c634668e58dd5d3314ea89", "title": "Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/775c/15a5dfca426d53c634668e58dd5d3314ea89.pdf"]}, {"id": "8f89aed13cb3555b56fccd715753f9ea72f27f05", "title": "Attended End-to-end Architecture for Age Estimation from Facial Expression Videos.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.08690.pdf"]}, {"id": "6dcf418c778f528b5792104760f1fbfe90c6dd6a", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "cdae8e9cc9d605856cf5709b2fdf61f722d450c1", "title": "Deep Learning for Biometrics : A Survey KALAIVANI SUNDARARAJAN", "year": "2018", "pdf": []}, {"id": "fc516a492cf09aaf1d319c8ff112c77cfb55a0e5", "title": "XBadges. Identifying and training soft skills with commercial video games. Improving persistence, risk taking & spatial reasoning with commercial video games and facial and emotional recognition system", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.00863.pdf"]}, {"id": "fc1e37fb16006b62848def92a51434fc74a2431a", "title": "A Comprehensive Analysis of Deep Regression", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.08450.pdf"]}, {"id": "18858cc936947fc96b5c06bbe3c6c2faa5614540", "title": "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf"]}, {"id": "a2344004f0e1409c0c9473d071a5cfd74bff0a5d", "title": "Learnable PINs: Cross-modal Embeddings for Person Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00833.pdf"]}, {"id": "28715fc79bd5ff8dd8b6fc68a4f2641e5d1b8a08", "title": "Deep Label Distribution Learning for Apparent Age Estimation", "year": "2015", "pdf": ["http://lamda.nju.edu.cn/gaobb/Pub_files/iccvw15_AGE.pdf", "http://lamda.nju.edu.cn/gaobb/Pub_files/iccvw15_AGE_slide.pdf", "http://lamda.nju.edu.cn/weixs/publication/iccvw15_AGE.pdf", "http://lamda.nju.edu.cn/weixs/slide/iccvw15_AGE_slide.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Huo_Deep_Age_Distribution_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Yang_Deep_Label_Distribution_ICCV_2015_paper.pdf", "https://cs.nju.edu.cn/wujx/paper/LaP_ICCV2015_24.pdf"]}, {"id": "e7b6887cd06d0c1aa4902335f7893d7640aef823", "title": "Modeling of facial aging and kinship: A survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.04636.pdf"]}, {"id": "9e0285debd4b0ba7769b389181bd3e0fd7a02af6", "title": "From Face Images and Attributes to Attributes", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/9e02/85debd4b0ba7769b389181bd3e0fd7a02af6.pdf"]}, {"id": "ea227e47b8a1e8f55983c34a17a81e5d3fa11cfd", "title": "Age group classification in the wild with deep RoR architecture", "year": "2017", "pdf": []}, {"id": "6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365", "title": "Privacy-Preserving Deep Inference for Rich User Data on The Cloud", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.01727.pdf"]}, {"id": "1d776bfe627f1a051099997114ba04678c45f0f5", "title": "Deployment of Customized Deep Learning based Video Analytics On Surveillance Cameras", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10604.pdf"]}, {"id": "b972683d702a65d3ee7a25bc931a5890d1072b6b", "title": "Demographic Analysis from Biometric Data: Achievements, Challenges, and New Frontiers", "year": "2018", "pdf": []}, {"id": "fcc6fd9b243474cd96d5a7f4a974f0ef85e7ddf7", "title": "InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00193.pdf"]}, {"id": "28d4e027c7e90b51b7d8908fce68128d1964668a", "title": "Level Playing Field for Million Scale Face Recognition", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.00393.pdf"]}, {"id": "a022eff5470c3446aca683eae9c18319fd2406d5", "title": "Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description s\u00e9mantique des traits visuels humains)", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a022/eff5470c3446aca683eae9c18319fd2406d5.pdf"]}, {"id": "26c7eda262dfda1c3a3597a3bf1f2f1cc4013425", "title": "Some Like It Hot \u2014 Visual Guidance for Preference Prediction", "year": "2016", "pdf": ["https://arxiv.org/pdf/1510.07867.pdf"]}, {"id": "a4cd3fc63ddc8468d3f684f32cb0578e41fed226", "title": "Generative Adversarial Style Transfer Networks for Face Aging", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ea7d/ff897a6618a5ae9c7fed19899ac0d3a4a04e.pdf"]}, {"id": "632fa986bed53862d83918c2b71ab953fd70d6cc", "title": "What Face and Body Shapes Can Tell About Height", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10355.pdf"]}, {"id": "d11d0151618987ce00a88ceda55d35f0bb89122e", "title": "An analysis of automatic gender detection by first-order configural relations", "year": "2017", "pdf": []}, {"id": "dca2bb023b076de1ccd0c6b8d71faeb3fccb3978", "title": "Joint Estimation of Age and Expression by Combining Scattering and Convolutional Networks", "year": "2018", "pdf": []}, {"id": "bb2944569a2b3d3b8340b36d4903c8cddf20047f", "title": "Improving Regression Performance with Distributional Losses", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.04613.pdf"]}, {"id": "f77c9bf5beec7c975584e8087aae8d679664a1eb", "title": "Local Deep Neural Networks for Age and Gender Classification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.08497.pdf"]}, {"id": "a9ad8f6c6bf110485921b17f9790241b1548487c", "title": "Automatic Skin Tone Extraction for Visagism Applications", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/a9ad/8f6c6bf110485921b17f9790241b1548487c.pdf"]}, {"id": "ad01c5761c89fdf523565cc0dec77b9a6ec8e694", "title": "Global and Local Consistent Wavelet-domain Age Synthesis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07764.pdf"]}, {"id": "d4d1ac1cfb2ca703c4db8cc9a1c7c7531fa940f9", "title": "Gender estimation based on supervised HOG, Action Units and unsupervised CNN feature extraction", "year": "2017", "pdf": []}, {"id": "2b60fe300735ea7c63f91c1121e89ba66040b833", "title": "A study on face recognition techniques with age and gender classification", "year": "2017", "pdf": []}, {"id": "d5444f9475253bbcfef85c351ea9dab56793b9ea", "title": "BoxCars: Improving Fine-Grained Recognition of Vehicles using 3-D Bounding Boxes in Traffic Surveillance", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.00686.pdf"]}, {"id": "79c959833ff49f860e20b6654dbf4d6acdee0230", "title": "Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised Localization and Beyond", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.02545.pdf"]}, {"id": "af6e351d58dba0962d6eb1baf4c9a776eb73533f", "title": "How to Train Your Deep Neural Network with Dictionary Learning", "year": "2016", "pdf": ["https://arxiv.org/pdf/1612.07454.pdf"]}, {"id": "22bebedc1a5f3556cb4f577bdbe032299a2865e8", "title": "Effective training of convolutional neural networks for face-based gender and age prediction", "year": "2017", "pdf": ["http://www.eurecom.fr/fr/publication/5252/download/sec-publi-5252.pdf"]}, {"id": "af6cae71f24ea8f457e581bfe1240d5fa63faaf7", "title": "Multi-Task Zipping via Layer-wise Neuron Sharing", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09791.pdf"]}, {"id": "633c851ebf625ad7abdda2324e9de093cf623141", "title": "Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database", "year": "2017", "pdf": ["http://sergioescalera.com/wp-content/uploads/2017/05/APPA-REAL-Slides.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01362.pdf"]}, {"id": "5366573e96a1dadfcd4fd592f83017e378a0e185", "title": "Server, server in the cloud. Who is the fairest in the crowd?", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.08801.pdf"]}, {"id": "81e628a23e434762b1208045919af48dceb6c4d2", "title": "Attend and Rectify: A Gated Attention Mechanism for Fine-Grained Recovery", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07320.pdf"]}, {"id": "8c2233d763deb01761abe72b9b3dbb0b115916d3", "title": "Deep Modeling of Human Age Guesses for Apparent Age Estimation", "year": "2018", "pdf": []}, {"id": "357963a46dfc150670061dbc23da6ba7d6da786e", "title": "Online Regression with Model Selection", "year": "2018", "pdf": []}, {"id": "4560491820e0ee49736aea9b81d57c3939a69e12", "title": "Investigating the Impact of Data Volume and Domain Similarity on Transfer Learning Applications", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.04008.pdf"]}, {"id": "c62c07de196e95eaaf614fb150a4fa4ce49588b4", "title": "SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/c62c/07de196e95eaaf614fb150a4fa4ce49588b4.pdf"]}, {"id": "97540905e4a9fdf425989a794f024776f28a3fa9", "title": "NDDR-CNN: Layer-wise Feature Fusing in Multi-Task CNN by Neural Discriminative Dimensionality Reduction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.08297.pdf"]}, {"id": "cca476114c48871d05537abb303061de5ab010d6", "title": "A compact deep convolutional neural network architecture for video based age and gender estimation", "year": "2016", "pdf": []}, {"id": "377c6563f97e76a4dc836a0bd23d7673492b1aae", "title": "Motion deblurring of faces", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.03330.pdf"]}, {"id": "1277b1b8b609a18b94e4907d76a117c9783a5373", "title": "VirtualIdentity: Privacy preserving user profiling", "year": "2016", "pdf": ["https://arxiv.org/pdf/1808.10151.pdf"]}, {"id": "6e911227e893d0eecb363015754824bf4366bdb7", "title": "Wasserstein Divergence for GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1712.01026.pdf"]}, {"id": "4562ea84ebfc8d9864e943ed9e44d35997bbdf43", "title": "Small Sample Deep Learning for Newborn Gestational Age Estimation", "year": "2017", "pdf": ["http://eprints.nottingham.ac.uk/40828/1/automatic-gestational-age.pdf"]}, {"id": "02567fd428a675ca91a0c6786f47f3e35881bcbd", "title": "Deep Label Distribution Learning With Label Ambiguity", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.01731.pdf"]}, {"id": "ff60d4601adabe04214c67e12253ea3359f4e082", "title": "Video-based emotion recognition in the wild using deep transfer learning and score fusion", "year": "2017", "pdf": ["https://www.cmpe.boun.edu.tr/~salah/imavis_emotiw15_v10.pdf"]}, {"id": "efb56e7488148d52d3b8a2dae9f8880b273f4226", "title": "Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07718.pdf"]}, {"id": "2c2f03edc9b76e5ac132b54b2e3313237e22b5e7", "title": "Towards neural art-based face de-identification in video data", "year": "2016", "pdf": []}, {"id": "5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd", "title": "Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.06221.pdf"]}, {"id": "17de5a9ce09f4834629cd76b8526071a956c9c6d", "title": "Smart Parental Advisory: A Usage Control and Deep Learning-Based Framework for Dynamic Parental Control on Smart TV", "year": "2017", "pdf": []}, {"id": "f60070d3a4d333aa1436e4c372b1feb5b316a7ba", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"]}, {"id": "f839ae810338e3b12c8e2f8db6ce4d725738d2d9", "title": "Learning CNNs for Face Recognition from Weakly Annotated Images", "year": "2017", "pdf": []}, {"id": "0435a34e93b8dda459de49b499dd71dbb478dc18", "title": "VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks", "year": "2018", "pdf": []}, {"id": "ca50e441e275a3c04299bb6b59f6c098abecec1d", "title": "Face Recognition and Age Estimation Implications of Changes in Facial Features: A Critical Review Study", "year": "2018", "pdf": ["https://umexpert.um.edu.my/file/publication/00005433_161555_73291.pdf"]}, {"id": "15f82c3a7f12b82281aca77d519403086611ae69", "title": "Comparative Study of Human Age Estimation Based on Hand-Crafted and Deep Face Features", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/15f8/2c3a7f12b82281aca77d519403086611ae69.pdf"]}, {"id": "366e650a578a3732ebe10267f04bcf9d3129f076", "title": "Design of Smart Shopping Wall Using Hand Gesture and Facial Image Recognition", "year": "2017", "pdf": []}, {"id": "daa120032d8f141bc6aae20e23b1b754a0dd7d5f", "title": "Kernel ELM and CNN Based Facial Age Estimation", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Gurpinar_Kernel_ELM_and_CVPR_2016_paper.pdf"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"]}, {"id": "10195a163ab6348eef37213a46f60a3d87f289c5", "title": "Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks", "year": "2016", "pdf": ["http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Rothe-IJCV-2016.pdf", "https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/156130/eth-50296-01.pdf"]}, {"id": "d818568838433a6d6831adde49a58cef05e0c89f", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf", "https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "1b9472907f5b7a1815c98b4562dce6c46dd2cf34", "title": "Consistent Rank Logits for Ordinal Regression with Convolutional Neural Networks", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.07884.pdf"]}, {"id": "0deea943ac4dc1be822c02f97d0c6c97e201ba8d", "title": "Age category estimation using matching convolutional neural network", "year": "2018", "pdf": []}, {"id": "1171ec9250743c349e5218d4a01c4fdad94c7707", "title": "Low-Cost Transfer Learning of Face Tasks", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.02675.pdf"]}, {"id": "ac12ba5bf81de83991210b4cd95b4ad048317681", "title": "Combining Deep Facial and Ambient Features for First Impression Estimation", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/ac12/ba5bf81de83991210b4cd95b4ad048317681.pdf"]}, {"id": "57db5825a8eb2927735fb7c18c3ee4fb18d27d47", "title": "Max-Mahalanobis Linear Discriminant Analysis Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.09308.pdf"]}, {"id": "02e17f547dd75eee7282af1b5ad2626829615ac9", "title": "Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10118.pdf"]}, {"id": "6be2f5d7417c7a441f4f3357f2c1877aa4604b67", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": []}, {"id": "6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81", "title": "Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Uricar_Structured_Output_SVM_CVPR_2016_paper.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01293.pdf", "https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/125793/eth-50297-01.pdf"]}, {"id": "4c81c76f799c48c33bb63b9369d013f51eaf5ada", "title": "Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w26/papers/Kaya_Multi-Modal_Score_Fusion_CVPR_2017_paper.pdf", "https://www.cmpe.boun.edu.tr/~salah/kaya17chalearn.pdf"]}, {"id": "341ed69a6e5d7a89ff897c72c1456f50cfb23c96", "title": "DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04280.pdf"]}, {"id": "99f43e5f8f4348c04e97590ec173d61d2be1882d", "title": "Small Sample Deep Learning for Newborn Gestational Age Estimation", "year": "2017", "pdf": ["http://eprints.nottingham.ac.uk/40828/1/automatic-gestational-age.pdf"]}, {"id": "9755554b13103df634f9b1ef50a147dd02eab02f", "title": "How Transferable Are CNN-Based Features for Age and Gender Classification?", "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.00134.pdf"]}, {"id": "71c4b8e1bb25ee80f4317411ea8180dae6499524", "title": "Extended Features using Machine Learning Techniques for Photo Liking Prediction", "year": "2018", "pdf": []}, {"id": "7cee802e083c5e1731ee50e731f23c9b12da7d36", "title": "2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02181.pdf"]}, {"id": "f1ea8bdb3bd39d8269628bc7b99b2d918ea23ef7", "title": "Human features extraction by using anatomical and low level image descriptors from whole body images", "year": "2016", "pdf": []}, {"id": "8d5998cd984e7cce307da7d46f155f9db99c6590", "title": "ChaLearn looking at people: A review of events and resources", "year": "2017", "pdf": ["https://arxiv.org/pdf/1701.02664.pdf"]}, {"id": "fca6df7d36f449d48a8d1e48a78c860d52e3baf8", "title": "Fine-Grained Age Estimation in the wild with Attention LSTM Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10445.pdf"]}, {"id": "2a7b7de7488211471a001044a3a249a117af488a", "title": "Physical Attribute Prediction Using Deep Residual Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.07857.pdf"]}, {"id": "d6c8f5674030cf3f5a2f7cc929bad37a422b26a0", "title": "Face Aging Simulation with Deep Convolutional Generative Adversarial Networks", "year": "2018", "pdf": []}, {"id": "a7664247a37a89c74d0e1a1606a99119cffc41d4", "title": "Modal Consistency based Pre-Trained Multi-Model Reuse", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a766/4247a37a89c74d0e1a1606a99119cffc41d4.pdf"]}, {"id": "0e3840ea3227851aaf4633133dd3cbf9bbe89e5b", "title": "ChaLearn Looking at People: Events and Resources", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/0e38/40ea3227851aaf4633133dd3cbf9bbe89e5b.pdf"]}, {"id": "93e962f8886eae13b02ad2aa98bdedfbd7e68709", "title": "Dual Conditional GANs for Face Aging and Rejuvenation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/93e9/62f8886eae13b02ad2aa98bdedfbd7e68709.pdf"]}, {"id": "e5563a0d6a2312c614834dc784b5cc7594362bff", "title": "Real-Time Demographic Profiling from Face Imagery with Fisher Vectors", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e556/3a0d6a2312c614834dc784b5cc7594362bff.pdf"]}, {"id": "6f3054f182c34ace890a32fdf1656b583fbc7445", "title": "Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/6f30/54f182c34ace890a32fdf1656b583fbc7445.pdf"]}, {"id": "a398fcb30b49bee32d8f2c4cd3939517cd262025", "title": "Generative Adversarial Style Transfer Networks for Face Aging", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Palsson_Generative_Adversarial_Style_CVPR_2018_paper.pdf", "http://www.vision.ee.ethz.ch/~aeirikur/generative-adversarial-style.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Palsson-CVPRW-2018.pdf"]}, {"id": "7b92d1e53cc87f7a4256695de590098a2f30261e", "title": "From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w48/Clapes_From_Apparent_to_CVPR_2018_paper.pdf"]}, {"id": "ac2e3a889fc46ca72f9a2cdedbdd6f3d4e9e2627", "title": "Age detection from a single image using multitask neural networks : An overview and design proposal", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/ac2e/3a889fc46ca72f9a2cdedbdd6f3d4e9e2627.pdf"]}]} \ No newline at end of file
+{"id": "10195a163ab6348eef37213a46f60a3d87f289c5", "citations": [{"id": "3c4f6d24b55b1fd3c5b85c70308d544faef3f69a", "title": "A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.02952.pdf"]}, {"id": "f46a526c423dd09a3f14f2c9a3838fb4f56fa730", "title": "Anchored Regression Networks Applied to Age Estimation and Super Resolution", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Agustsson_Anchored_Regression_Networks_ICCV_2017_paper.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-ICCV-2017.pdf"]}, {"id": "380dd0ddd5d69adc52defc095570d1c22952f5cc", "title": "Improving Smiling Detection with Race and Gender Diversity", "year": "2017", "pdf": []}, {"id": "ec0104286c96707f57df26b4f0a4f49b774c486b", "title": "An Ensemble CNN2ELM for Age Estimation", "year": "2018", "pdf": ["http://www.cs.newpaltz.edu/~lik/publications/Mingxing-Duan-IEEE-TIFS-2018.pdf"]}, {"id": "d444368421f456baf8c3cb089244e017f8d32c41", "title": "CNN for IMU assisted odometry estimation using velodyne LiDAR", "year": "2018", "pdf": ["https://arxiv.org/pdf/1712.06352.pdf"]}, {"id": "c9c2de3628be7e249722b12911bebad84b567ce6", "title": "Age and gender recognition in the wild with deep attention", "year": "2017", "pdf": []}, {"id": "305346d01298edeb5c6dc8b55679e8f60ba97efb", "title": "Fine-Grained Face Annotation Using Deep Multi-Task CNN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3053/46d01298edeb5c6dc8b55679e8f60ba97efb.pdf"]}, {"id": "9939498315777b40bed9150d8940fc1ac340e8ba", "title": "ChaLearn Looking at People and Faces of the World: Face AnalysisWorkshop and Challenge 2016", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Escalera_ChaLearn_Looking_at_CVPR_2016_paper.pdf"]}, {"id": "df7af280771a6c8302b75ed0a14ffe7854cca679", "title": "Prediction of users' facial attractiveness on an online dating website", "year": "2017", "pdf": []}, {"id": "ab3fcd9d5fbd2d0ad48fba4005899cf13e08d07e", "title": "Evaluating Automated Facial Age Estimation Techniques for Digital Forensics", "year": "2018", "pdf": ["https://forensicsandsecurity.com/papers/EvaluatingFacialAgeEstimation.pdf"]}, {"id": "8397956c7ad3bd24c6c6c0b38866e165367327c0", "title": "Social Relation Trait Discovery from Visual LifeLog Data with Facial Multi-Attribute Framework", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8397/956c7ad3bd24c6c6c0b38866e165367327c0.pdf"]}, {"id": "8a991beca5bc864bbc1e26df953fd1fbd4dcb4bd", "title": "Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age.", "year": "2018", "pdf": ["http://www.vision.ee.ethz.ch/~timofter/publications/Patcas-IJOMS-2018.pdf"]}, {"id": "8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b", "title": "Learning from Longitudinal Face Demonstration - Where Tractable Deep Modeling Meets Inverse Reinforcement Learning", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.10520.pdf"]}, {"id": "92b61b09d2eed4937058d0f9494d9efeddc39002", "title": "BoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/92b6/1b09d2eed4937058d0f9494d9efeddc39002.pdf"]}, {"id": "2b632f090c09435d089ff76220fd31fd314838ae", "title": "Early Adaptation of Deep Priors in Age Prediction from Face Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Hajibabaei_Early_Adaptation_of_ICCV_2017_paper.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Hajibabaei-ICCVW-2017.pdf"]}, {"id": "36939e6a365e9db904d81325212177c9e9e76c54", "title": "Assessing the Accuracy of Four Popular Face Recognition Tools for Inferring Gender, Age, and Race", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/941b/5492e6ac98355fd7bc7531f846d638e814ac.pdf"]}, {"id": "d00787e215bd74d32d80a6c115c4789214da5edb", "title": "Faster and Lighter Online Sparse Dictionary Learning Project report", "year": "", "pdf": ["https://pdfs.semanticscholar.org/d007/87e215bd74d32d80a6c115c4789214da5edb.pdf"]}, {"id": "b8e5800dfc590f82a0f7eedefce9abebf8088d12", "title": "How to Train Your Neural Network with Dictionary Learning", "year": "2017", "pdf": []}, {"id": "775c15a5dfca426d53c634668e58dd5d3314ea89", "title": "Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/775c/15a5dfca426d53c634668e58dd5d3314ea89.pdf"]}, {"id": "6dcf418c778f528b5792104760f1fbfe90c6dd6a", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "cdae8e9cc9d605856cf5709b2fdf61f722d450c1", "title": "Deep Learning for Biometrics : A Survey KALAIVANI SUNDARARAJAN", "year": "2018", "pdf": []}, {"id": "fc516a492cf09aaf1d319c8ff112c77cfb55a0e5", "title": "XBadges. Identifying and training soft skills with commercial video games. Improving persistence, risk taking & spatial reasoning with commercial video games and facial and emotional recognition system", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.00863.pdf"]}, {"id": "fc1e37fb16006b62848def92a51434fc74a2431a", "title": "A Comprehensive Analysis of Deep Regression", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.08450.pdf"]}, {"id": "18858cc936947fc96b5c06bbe3c6c2faa5614540", "title": "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/03c1/fc9c3339813ed81ad0de540132f9f695a0f8.pdf"]}, {"id": "a2344004f0e1409c0c9473d071a5cfd74bff0a5d", "title": "Learnable PINs: Cross-modal Embeddings for Person Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00833.pdf"]}, {"id": "28715fc79bd5ff8dd8b6fc68a4f2641e5d1b8a08", "title": "Deep Label Distribution Learning for Apparent Age Estimation", "year": "2015", "pdf": ["http://lamda.nju.edu.cn/gaobb/Pub_files/iccvw15_AGE.pdf", "http://lamda.nju.edu.cn/gaobb/Pub_files/iccvw15_AGE_slide.pdf", "http://lamda.nju.edu.cn/weixs/publication/iccvw15_AGE.pdf", "http://lamda.nju.edu.cn/weixs/slide/iccvw15_AGE_slide.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Huo_Deep_Age_Distribution_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Yang_Deep_Label_Distribution_ICCV_2015_paper.pdf", "https://cs.nju.edu.cn/wujx/paper/LaP_ICCV2015_24.pdf"]}, {"id": "e7b6887cd06d0c1aa4902335f7893d7640aef823", "title": "Modeling of facial aging and kinship: A survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.04636.pdf"]}, {"id": "9e0285debd4b0ba7769b389181bd3e0fd7a02af6", "title": "From Face Images and Attributes to Attributes", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/9e02/85debd4b0ba7769b389181bd3e0fd7a02af6.pdf"]}, {"id": "6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365", "title": "Privacy-Preserving Deep Inference for Rich User Data on The Cloud", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.01727.pdf"]}, {"id": "1d776bfe627f1a051099997114ba04678c45f0f5", "title": "Deployment of Customized Deep Learning based Video Analytics On Surveillance Cameras", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10604.pdf"]}, {"id": "b972683d702a65d3ee7a25bc931a5890d1072b6b", "title": "Demographic Analysis from Biometric Data: Achievements, Challenges, and New Frontiers", "year": "2018", "pdf": []}, {"id": "fcc6fd9b243474cd96d5a7f4a974f0ef85e7ddf7", "title": "InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00193.pdf"]}, {"id": "28d4e027c7e90b51b7d8908fce68128d1964668a", "title": "Level Playing Field for Million Scale Face Recognition", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.00393.pdf"]}, {"id": "a022eff5470c3446aca683eae9c18319fd2406d5", "title": "Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description s\u00e9mantique des traits visuels humains)", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a022/eff5470c3446aca683eae9c18319fd2406d5.pdf"]}, {"id": "26c7eda262dfda1c3a3597a3bf1f2f1cc4013425", "title": "Some Like It Hot \u2014 Visual Guidance for Preference Prediction", "year": "2016", "pdf": ["https://arxiv.org/pdf/1510.07867.pdf"]}, {"id": "a4cd3fc63ddc8468d3f684f32cb0578e41fed226", "title": "Generative Adversarial Style Transfer Networks for Face Aging", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ea7d/ff897a6618a5ae9c7fed19899ac0d3a4a04e.pdf"]}, {"id": "632fa986bed53862d83918c2b71ab953fd70d6cc", "title": "What Face and Body Shapes Can Tell About Height", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10355.pdf"]}, {"id": "d11d0151618987ce00a88ceda55d35f0bb89122e", "title": "An analysis of automatic gender detection by first-order configural relations", "year": "2017", "pdf": []}, {"id": "dca2bb023b076de1ccd0c6b8d71faeb3fccb3978", "title": "Joint Estimation of Age and Expression by Combining Scattering and Convolutional Networks", "year": "2018", "pdf": []}, {"id": "bb2944569a2b3d3b8340b36d4903c8cddf20047f", "title": "Improving Regression Performance with Distributional Losses", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.04613.pdf"]}, {"id": "f77c9bf5beec7c975584e8087aae8d679664a1eb", "title": "Local Deep Neural Networks for Age and Gender Classification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.08497.pdf"]}, {"id": "a9ad8f6c6bf110485921b17f9790241b1548487c", "title": "Automatic Skin Tone Extraction for Visagism Applications", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/a9ad/8f6c6bf110485921b17f9790241b1548487c.pdf"]}, {"id": "ad01c5761c89fdf523565cc0dec77b9a6ec8e694", "title": "Global and Local Consistent Wavelet-domain Age Synthesis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07764.pdf"]}, {"id": "d4d1ac1cfb2ca703c4db8cc9a1c7c7531fa940f9", "title": "Gender estimation based on supervised HOG, Action Units and unsupervised CNN feature extraction", "year": "2017", "pdf": []}, {"id": "d5444f9475253bbcfef85c351ea9dab56793b9ea", "title": "BoxCars: Improving Fine-Grained Recognition of Vehicles using 3-D Bounding Boxes in Traffic Surveillance", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.00686.pdf"]}, {"id": "22bebedc1a5f3556cb4f577bdbe032299a2865e8", "title": "Effective training of convolutional neural networks for face-based gender and age prediction", "year": "2017", "pdf": ["http://www.eurecom.fr/fr/publication/5252/download/sec-publi-5252.pdf"]}, {"id": "af6cae71f24ea8f457e581bfe1240d5fa63faaf7", "title": "Multi-Task Zipping via Layer-wise Neuron Sharing", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09791.pdf"]}, {"id": "633c851ebf625ad7abdda2324e9de093cf623141", "title": "Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database", "year": "2017", "pdf": ["http://sergioescalera.com/wp-content/uploads/2017/05/APPA-REAL-Slides.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01362.pdf"]}, {"id": "5366573e96a1dadfcd4fd592f83017e378a0e185", "title": "Server, server in the cloud. Who is the fairest in the crowd?", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.08801.pdf"]}, {"id": "81e628a23e434762b1208045919af48dceb6c4d2", "title": "Attend and Rectify: A Gated Attention Mechanism for Fine-Grained Recovery", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07320.pdf"]}, {"id": "8c2233d763deb01761abe72b9b3dbb0b115916d3", "title": "Deep Modeling of Human Age Guesses for Apparent Age Estimation", "year": "2018", "pdf": []}, {"id": "357963a46dfc150670061dbc23da6ba7d6da786e", "title": "Online Regression with Model Selection", "year": "2018", "pdf": []}, {"id": "4560491820e0ee49736aea9b81d57c3939a69e12", "title": "Investigating the Impact of Data Volume and Domain Similarity on Transfer Learning Applications", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.04008.pdf"]}, {"id": "c62c07de196e95eaaf614fb150a4fa4ce49588b4", "title": "SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/c62c/07de196e95eaaf614fb150a4fa4ce49588b4.pdf"]}, {"id": "97540905e4a9fdf425989a794f024776f28a3fa9", "title": "NDDR-CNN: Layer-wise Feature Fusing in Multi-Task CNN by Neural Discriminative Dimensionality Reduction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.08297.pdf"]}, {"id": "cca476114c48871d05537abb303061de5ab010d6", "title": "A compact deep convolutional neural network architecture for video based age and gender estimation", "year": "2016", "pdf": []}, {"id": "377c6563f97e76a4dc836a0bd23d7673492b1aae", "title": "Motion deblurring of faces", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.03330.pdf"]}, {"id": "1277b1b8b609a18b94e4907d76a117c9783a5373", "title": "VirtualIdentity: Privacy preserving user profiling", "year": "2016", "pdf": ["https://arxiv.org/pdf/1808.10151.pdf"]}, {"id": "6e911227e893d0eecb363015754824bf4366bdb7", "title": "Wasserstein Divergence for GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1712.01026.pdf"]}, {"id": "4562ea84ebfc8d9864e943ed9e44d35997bbdf43", "title": "Small Sample Deep Learning for Newborn Gestational Age Estimation", "year": "2017", "pdf": ["http://eprints.nottingham.ac.uk/40828/1/automatic-gestational-age.pdf"]}, {"id": "ff60d4601adabe04214c67e12253ea3359f4e082", "title": "Video-based emotion recognition in the wild using deep transfer learning and score fusion", "year": "2017", "pdf": ["https://www.cmpe.boun.edu.tr/~salah/imavis_emotiw15_v10.pdf"]}, {"id": "2c2f03edc9b76e5ac132b54b2e3313237e22b5e7", "title": "Towards neural art-based face de-identification in video data", "year": "2016", "pdf": []}, {"id": "5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd", "title": "Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.06221.pdf"]}, {"id": "17de5a9ce09f4834629cd76b8526071a956c9c6d", "title": "Smart Parental Advisory: A Usage Control and Deep Learning-Based Framework for Dynamic Parental Control on Smart TV", "year": "2017", "pdf": []}, {"id": "f60070d3a4d333aa1436e4c372b1feb5b316a7ba", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"]}, {"id": "f839ae810338e3b12c8e2f8db6ce4d725738d2d9", "title": "Learning CNNs for Face Recognition from Weakly Annotated Images", "year": "2017", "pdf": []}, {"id": "ca50e441e275a3c04299bb6b59f6c098abecec1d", "title": "Face Recognition and Age Estimation Implications of Changes in Facial Features: A Critical Review Study", "year": "2018", "pdf": ["https://umexpert.um.edu.my/file/publication/00005433_161555_73291.pdf"]}, {"id": "15f82c3a7f12b82281aca77d519403086611ae69", "title": "Comparative Study of Human Age Estimation Based on Hand-Crafted and Deep Face Features", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/15f8/2c3a7f12b82281aca77d519403086611ae69.pdf"]}, {"id": "366e650a578a3732ebe10267f04bcf9d3129f076", "title": "Design of Smart Shopping Wall Using Hand Gesture and Facial Image Recognition", "year": "2017", "pdf": []}, {"id": "daa120032d8f141bc6aae20e23b1b754a0dd7d5f", "title": "Kernel ELM and CNN Based Facial Age Estimation", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Gurpinar_Kernel_ELM_and_CVPR_2016_paper.pdf"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"]}, {"id": "10195a163ab6348eef37213a46f60a3d87f289c5", "title": "Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks", "year": "2016", "pdf": ["http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Rothe-IJCV-2016.pdf", "https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/156130/eth-50296-01.pdf"]}, {"id": "d818568838433a6d6831adde49a58cef05e0c89f", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf", "https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "1b9472907f5b7a1815c98b4562dce6c46dd2cf34", "title": "Consistent Rank Logits for Ordinal Regression with Convolutional Neural Networks", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.07884.pdf"]}, {"id": "0deea943ac4dc1be822c02f97d0c6c97e201ba8d", "title": "Age category estimation using matching convolutional neural network", "year": "2018", "pdf": []}, {"id": "1171ec9250743c349e5218d4a01c4fdad94c7707", "title": "Low-Cost Transfer Learning of Face Tasks", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.02675.pdf"]}, {"id": "ac12ba5bf81de83991210b4cd95b4ad048317681", "title": "Combining Deep Facial and Ambient Features for First Impression Estimation", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/ac12/ba5bf81de83991210b4cd95b4ad048317681.pdf"]}, {"id": "57db5825a8eb2927735fb7c18c3ee4fb18d27d47", "title": "Max-Mahalanobis Linear Discriminant Analysis Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.09308.pdf"]}, {"id": "6be2f5d7417c7a441f4f3357f2c1877aa4604b67", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": []}, {"id": "6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81", "title": "Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Uricar_Structured_Output_SVM_CVPR_2016_paper.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01293.pdf", "https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/125793/eth-50297-01.pdf"]}, {"id": "4c81c76f799c48c33bb63b9369d013f51eaf5ada", "title": "Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w26/papers/Kaya_Multi-Modal_Score_Fusion_CVPR_2017_paper.pdf", "https://www.cmpe.boun.edu.tr/~salah/kaya17chalearn.pdf"]}, {"id": "341ed69a6e5d7a89ff897c72c1456f50cfb23c96", "title": "DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04280.pdf"]}, {"id": "99f43e5f8f4348c04e97590ec173d61d2be1882d", "title": "Small Sample Deep Learning for Newborn Gestational Age Estimation", "year": "2017", "pdf": ["http://eprints.nottingham.ac.uk/40828/1/automatic-gestational-age.pdf"]}, {"id": "9755554b13103df634f9b1ef50a147dd02eab02f", "title": "How Transferable Are CNN-Based Features for Age and Gender Classification?", "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.00134.pdf"]}, {"id": "71c4b8e1bb25ee80f4317411ea8180dae6499524", "title": "Extended Features using Machine Learning Techniques for Photo Liking Prediction", "year": "2018", "pdf": []}, {"id": "f1ea8bdb3bd39d8269628bc7b99b2d918ea23ef7", "title": "Human features extraction by using anatomical and low level image descriptors from whole body images", "year": "2016", "pdf": []}, {"id": "2a7b7de7488211471a001044a3a249a117af488a", "title": "Physical Attribute Prediction Using Deep Residual Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.07857.pdf"]}, {"id": "d6c8f5674030cf3f5a2f7cc929bad37a422b26a0", "title": "Face Aging Simulation with Deep Convolutional Generative Adversarial Networks", "year": "2018", "pdf": []}, {"id": "a7664247a37a89c74d0e1a1606a99119cffc41d4", "title": "Modal Consistency based Pre-Trained Multi-Model Reuse", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a766/4247a37a89c74d0e1a1606a99119cffc41d4.pdf"]}, {"id": "0e3840ea3227851aaf4633133dd3cbf9bbe89e5b", "title": "ChaLearn Looking at People: Events and Resources", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/0e38/40ea3227851aaf4633133dd3cbf9bbe89e5b.pdf"]}, {"id": "93e962f8886eae13b02ad2aa98bdedfbd7e68709", "title": "Dual Conditional GANs for Face Aging and Rejuvenation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/93e9/62f8886eae13b02ad2aa98bdedfbd7e68709.pdf"]}, {"id": "e5563a0d6a2312c614834dc784b5cc7594362bff", "title": "Real-Time Demographic Profiling from Face Imagery with Fisher Vectors", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e556/3a0d6a2312c614834dc784b5cc7594362bff.pdf"]}, {"id": "6f3054f182c34ace890a32fdf1656b583fbc7445", "title": "Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/6f30/54f182c34ace890a32fdf1656b583fbc7445.pdf"]}, {"id": "a398fcb30b49bee32d8f2c4cd3939517cd262025", "title": "Generative Adversarial Style Transfer Networks for Face Aging", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Palsson_Generative_Adversarial_Style_CVPR_2018_paper.pdf", "http://www.vision.ee.ethz.ch/~aeirikur/generative-adversarial-style.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Palsson-CVPRW-2018.pdf"]}, {"id": "7b92d1e53cc87f7a4256695de590098a2f30261e", "title": "From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w48/Clapes_From_Apparent_to_CVPR_2018_paper.pdf"]}, {"id": "ac2e3a889fc46ca72f9a2cdedbdd6f3d4e9e2627", "title": "Age detection from a single image using multitask neural networks : An overview and design proposal", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/ac2e/3a889fc46ca72f9a2cdedbdd6f3d4e9e2627.pdf"]}]} \ No newline at end of file