diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2018-12-07 18:09:03 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2018-12-07 18:09:03 +0100 |
| commit | e27e5fb4e6a9ddcc7c6f41c7e317f3efb371ef5f (patch) | |
| tree | 5ea5933da66b270a09e86d15496459dcb26527d2 /scraper | |
| parent | 927fd8825101749cc8fcdc14f05ffd50d14ed652 (diff) | |
final citation list
Diffstat (limited to 'scraper')
| -rw-r--r-- | scraper/datasets/citations-20181207.csv | 92 |
1 files changed, 48 insertions, 44 deletions
diff --git a/scraper/datasets/citations-20181207.csv b/scraper/datasets/citations-20181207.csv index a5167478..f36fa55e 100644 --- a/scraper/datasets/citations-20181207.csv +++ b/scraper/datasets/citations-20181207.csv @@ -6,7 +6,7 @@ key,name,title,,,,Comments,,,,publication,day,month,year,pages,vol,author1,autho 4dfab,4DFAB,4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications,,,,,,,,,,,,,,,,,,,,,,,,,,,,
50_people_one_question,50 People One Question,Merging Pose Estimates Across Space and Time,,,,,,,,,,,,,,,,,,,,,,,,,,,,
a_pascal_yahoo,aPascal,Describing Objects by their Attributes,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-aberdeen ,Aberdeen,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+aberdeen ,Aberdeen,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
adience,Adience,Age and Gender Estimation of Unfiltered Faces,,,,,,,,"Transactions on Information Forensics and Security (IEEE-TIFS), special issue on Facial Biometrics in the Wild",,,2014,2170 - 2179,9,Eran Eidinger,Roee Enbar, Tal Hassner,,,,,,,,,,,http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf,
afad,AFAD,Ordinal Regression with a Multiple Output CNN for Age Estimation,,,,,,,,,,,,,,,,,,,,,,,,,,,,
afew_va,AFEW-VA,"AFEW-VA database for valence and arousal estimation in-the-wild @@ -20,7 +20,7 @@ aflw,AFLW,"Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Dat booktitle = {{Proc. First IEEE International Workshop on Benchmarking Facial Image Analysis Technologies}}, year = {2011} } "
-afw,AFW,"Face detection, pose estimation and landmark localization in the wild",,,,no paper,,,,"Computer Vision and Pattern Recognition (CVPR) Providence, Rhode Island,",,,2012,,,X. Zhu,D. Ramanan,,,,,,,,,,,,http://www.ics.uci.edu/~xzhu/paper/face-cvpr12.pdf,
+afw,AFW,"Face detection, pose estimation and landmark localization in the wild",,,,,,,,"Computer Vision and Pattern Recognition (CVPR) Providence, Rhode Island,",,,2012,,,X. Zhu,D. Ramanan,,,,,,,,,,,,http://www.ics.uci.edu/~xzhu/paper/face-cvpr12.pdf,
agedb,AgeDB,"AgeDB: the first manually collected, in-the-wild age database",,,,,,,,Proceedings of IEEE Int’l Conf. on Computer Vision and Pattern Recognition (CVPR-W 2017,,,2017,,,S. Moschoglou,A. Papaioannou,C. Sagonas,J. Deng,I. Kotsia, S. Zafeiriou,,,,,,,agedb.pdf,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"@inproceedings{AgeDB, author = {S. Moschoglou and A. Papaioannou and C. Sagonas and J. Deng and I. Kotsia and S. Zafeiriou}, address = {Honolulu, Hawaii}, @@ -47,8 +47,8 @@ brainwash,Brainwash,Brainwash dataset,,,,,,,,,,,,,,,,,,,,,,,,,,,, bu_3dfe,BU-3DFE,A 3D Facial Expression Database For Facial Behavior Research,,,,,,,,,,,,,,,,,,,,,,,,,,,,
buhmap_db,BUHMAP-DB ,Facial Feature Tracking and Expression Recognition for Sign Language,,,,,,,,,,,,,,,,,,,,,,,,,,,,
cafe,CAFE,The Child Affective Facial Expression (CAFE) Set: Validity and reliability from untrained adults,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-caltech_10k_web_faces,Caltech 10K Web Faces,Pruning Training Sets for Learning of Object Categories,,,,This is a paper using the dataset (linked on the project website),,,,Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),,,2005,,,Anelia Angelova,Yaser Abu-Mostafa,Pietro Perona,,,,,,,,,,Angelova05DataPruning.pdf,http://www.vision.caltech.edu/anelia/DataPruning/Angelova05DataPruning.pdf,
-caltech_faces,Caltech Faces,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+caltech_10k_web_faces,Caltech 10K Web Faces, Pruning Training Sets for Learning of Object Categories,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+caltech_faces,Caltech Faces,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
caltech_pedestrians,Caltech Pedestrians,Pedestrian Detection: A Benchmark,,,,,,,,,,,,,,,,,,,,,,,,,,,,
caltech_pedestrians,Caltech Pedestrians,Pedestrian Detection: An Evaluation of the State of the Art,,,,,,,,,,,,,,,,,,,,,,,,,,,,
camel,CAMEL,CAMEL Dataset for Visual and Thermal Infrared Multiple Object Detection and Tracking,,,,,,,,,,,,,,,,,,,,,,,,,,,,
@@ -108,16 +108,16 @@ eth_andreas_ess,ETHZ Pedestrian,Depth and Appearance for Mobile Scene Analysis,, europersons,EuroCity Persons,The EuroCity Persons Dataset: A Novel Benchmark for Object Detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
expw,ExpW,Learning Social Relation Traits from Face Images,,,,,,,,,,,,,,,,,,,,,,,,,,,,
expw,ExpW,From Facial Expression Recognition to Interpersonal Relation Prediction,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-face_research_lab,Face Research Lab London,Face Research Lab London Set. figshare,,,,No paper (not even on internet?),,,,,,,2017,,,"DeBruine, Lisa","Jones, Benedict",,,,,,,,,,,,https://doi.org/10.6084/m9.figshare.5047666.v3,
+face_research_lab,Face Research Lab London,Face Research Lab London Set. figshare,,,,OK No paper (not even on internet?),,,,,,,2017,,,"DeBruine, Lisa","Jones, Benedict",,,,,,,,,,,,https://doi.org/10.6084/m9.figshare.5047666.v3,
face_scrub,FaceScrub,A data-driven approach to cleaning large face datasets,,,,,,,,Proc. IEEE International Conference on Image Processing (ICIP),,,2014,,,H.-W. Ng,S. Winkler,,,,,,,,,,,icip2014a.pdf,http://vintage.winklerbros.net/Publications/icip2014a.pdf,
face_tracer,FaceTracer,FaceTracer: A Search Engine for Large Collections of Images with Faces,,,,,,,,European Conference on Computer Vision (ECCV),,,2008,340-353,,N. Kumar,P. N. Belhumeur,S. K. Nayar,,,,,,,,1,,Kumar_ECCV08.pdf,http://www1.cs.columbia.edu/CAVE/publications/pdfs/Kumar_ECCV08.pdf,
face_tracer,FaceTracer,Face Swapping: Automatically Replacing Faces in Photographs,,,,,,,,ACM Trans. on Graphics (also Proc. of ACM SIGGRAPH),,,2008,,,D. Bitouk,N. Kumar,S. Dhillon,P.N. Belhumeur,S. K. Nayar,,,,,,2,,Bitouk_SIGGRAPH08.pdf,http://www1.cs.columbia.edu/CAVE/publications/pdfs/Bitouk_SIGGRAPH08.pdf,
-facebook,SFC,,,,,"we don't have that, no paper",,,,,,,,,,,,,,,,,,,,,,,,
+facebook,SFC,,,,,"OK no paper, private",,,,,,,,,,,,,,,,,,,,,,,,
facebook_100,Facebook100,Scaling Up Biologically-Inspired Computer Vision: A Case Study in Unconstrained Face Recognition on Facebook,,,,,,,,,,,,,,,,,,,,,,,,,,,,
faceplace,Face Place,Recognizing disguised faces,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-faces94,Faces94,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
-faces95,Faces95,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
-faces96,Faces96,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+faces94,Faces94,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
+faces95,Faces95,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
+faces96,Faces96,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
families_in_the_wild,FIW,Visual Kinship Recognition of Families in the Wild,,,,,,,,,,,,,,,,,,,,,,,,,,,,
fddb,FDDB,FDDB: A Benchmark for Face Detection in Unconstrained Settings,,,,,,,,"Technical Report UM-CS-2010-009, Dept. of Computer Science, University of Massachusetts",,,2010,,,Vidit Jain,Erik Learned-Mille,,,,,,,,,,,fddb.pdf,http://vis-www.cs.umass.edu/fddb/fddb.pdf,"@TechReport{fddbTech, author = {Vidit Jain and Erik Learned-Miller}, @@ -127,14 +127,17 @@ fddb,FDDB,FDDB: A Benchmark for Face Detection in Unconstrained Settings,,,,,,,, number = {UM-CS-2010-009} }"
fei,FEI,Captura e Alinhamento de Imagens: Um Banco de Faces Brasileiro,,,,"in portugese, but original paper",,,,,,,,,,,,,,,,,,,,,,,,
-feret,FERET,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+feret,FERET,The FERET Verification Testing Protocol for Face Recognition Algorithms,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+feret,FERET,The FERET database and evaluation procedure for face-recognition algorithms,,,,paper not in nextcloud,,,,,,,,,,,,,,,,,,,,,,,,
+feret,FERET,FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+feret,FERET,The FERET Evaluation Methodology for Face-Recognition Algorithms,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ferplus,FER+,Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution,,,,,,,,,,,,,,,,,,,,,,,,,,,,
fia,CMU FiA,The CMU Face In Action (FIA) Database,,,,,,,,,,,,,,,,,,,,,,,,,,,,
fiw_300,300-W,300 faces In-the-wild challenge: Database and results,,,,,,,,"Image and Vision Computing (IMAVIS), Special Issue on Facial Landmark Localisation ""In-The-Wild""",,,2016,,,C. Sagonas,E. Antonakos,"G, Tzimiropoulos",S. Zafeiriou,M. Pantic,,,,,,1,,,,
fiw_300,300-W,300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge,,,,,,,,"Proceedings of IEEE Int’l Conf. on Computer Vision (ICCV-W), 300 Faces in-the-Wild Challenge (300-W). Sydney, Australia",,,2013,,,C. Sagonas,G. Tzimiropoulos,S. Zafeiriou,M. Pantic,,,,,,,2,,,,
fiw_300,300-W,A semi-automatic methodology for facial landmark annotation,,,,,,,,"Proceedings of IEEE Int’l Conf. Computer Vision and Pattern Recognition (CVPR-W), 5th Workshop on Analysis and Modeling of Faces and Gestures (AMFG 2013). Oregon, USA,",,,2013,,,C. Sagonas,G. Tzimiropoulos,S. Zafeiriou,M. Pantic,,,,,,,3,,,,
-florida_inmates,Florida Inmate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-frav2d,FRAV2D,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+florida_inmates,Florida Inmate,,,,,"OK no paper, not official database",,,,,,,,,,,,,,,,,,,,,,,,
+frav2d,FRAV2D,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
frav3d,FRAV3D,"MULTIMODAL 2D, 2.5D & 3D FACE VERIFICATION",,,,,,,,,,,,,,,,,,,,,,,,,,,,
frgc,FRGC,Overview of the Face Recognition Grand Challenge,,,,,,,,,,,,,,,,,,,,,,,,,,,,
gallagher,Gallagher,Clothing Cosegmentation for Recognizing People,,,,,,,,IEEE Conference on Computer Vision and Pattern Recognition,,,2008,,,Andrew Gallagher,Tsuhan Chen,,,,,,,,,,,141.pdf,,
@@ -142,14 +145,16 @@ gavab_db,Gavab,GavabDB: a 3D face database,,,,,,,,,,,,,,,,,,,,,,,,,,,, geofaces,GeoFaces,GeoFaceExplorer: Exploring the Geo-Dependence of Facial Attributes,,,,,,,,,,,,,,,,,,,,,,,,,,,,
georgia_tech_face_database,Georgia Tech Face,Maximum likelihood training of the embedded HMM for face detection and recognition,,,,"I think this is the correct paper – database was colected 1999, this is 2000",,,,,,,,,,,,,,,,,,,,,,,,
gmu,Google Makeup,Parallel Optimized Pearson Correlation Condition (PO-PCC) for Robust Cosmetic Makeup Facial Recognition,,,,watermarked online publication,,,,,,,,,,,,,,,,,,,,,,,,
-google,Google (private),,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-graz,Graz Pedestrian,Generic Object Recognition with Boosting,,,,not sure which paper to use,,,,,,,,,,,,,,,,,,,,,,,,
-grimace,GRIMACE,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+google,Google (private),,,,,"OK no paper, private",,,,,,,,,,,,,,,,,,,,,,,,
+graz,Graz Pedestrian,Generic Object Recognition with Boosting,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+graz,Graz Pedestrian,Weak Hypotheses and Boosting for Generic Object Detection and Recognition,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+graz,Graz Pedestrian,Object Recognition Using Segmentation for Feature Detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+grimace,GRIMACE,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
h3d,H3D,Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations,,,,,,,,,,,,,,,,,,,,,,,,,,,,
hda_plus,HDA+,The HDA+ data set for research on fully automated re-identification systems,,,,,,,,,,,,,,,,,,,,,,,,,,,,
hda_plus,HDA+,A Multi-camera video data set for research on High-Definition surveillance,,,,,,,,,,,,,,,,,,,,,,,,,,,,
helen,Helen,Interactive Facial Feature Localization,,,,,,,,ECCV,,,2012,,,Vuong Le,Jonathan Brandt,Zhe Lin,Lubomir Boudev,Thomas S. Huang,,,,,,,,eccv2012_helen_final.pdf,http://www.ifp.illinois.edu/~vuongle2/helen/eccv2012_helen_final.pdf,
-hi4d_adsip,Hi4D-ADSIP,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+hi4d_adsip,Hi4D-ADSIP,Hi4D-ADSIP 3-D dynamic facial articulation database,,,,paper?,,,,,,,,,,,,,,,,,,,,,,,,
hid_equinox_infrared,HID,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
hipsterwars,Hipsterwars,Hipster Wars: Discovering Elements of Fashion Styles,,,,,,,,In European Conference on Computer Vision,,,2014,,,M. Hadi Kiapour,Kota Yamaguchi,Alexander C. Berg,Tamara L. Berg,,,,,,,,,hipster_eccv14.pdf,http://tamaraberg.com/papers/hipster_eccv14.pdf,"@inproceedings{ HipsterWarsECCV14, @@ -158,12 +163,13 @@ hipsterwars,Hipsterwars,Hipster Wars: Discovering Elements of Fashion Styles,,,, booktitle={European Conference on Computer Vision}, year = {2014} }"
-hollywood_headset,HollywoodHeads,Context-aware {CNNs} for person head detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-hrt_transgender,HRT Transgender,Is the Eye Region More Reliable Than the Face? A Preliminary Study of Face-based Recognition on a Transgender Dataset,,,,No paper (asked for citation),,,,"In Proc. of IEEE Intl. Conf. on Biometrics: Theory, Applications, and Systems",,,2013,,,Gayathri Mahalingam,Karl Ricanek Jr.,,,,,,,,,,,,https://pdfs.semanticscholar.org/b066/733d533250f4ddafd22c12456def7fa24f4c.pdf,
-hrt_transgender,HRT Transgender,Investigating the Periocular-Based Face Recognition Across Gender Transformation,,,,No paper (asked for citation),,,,IEEE Trans. On Information Forensics and Security,,,2014,pp. 2180 – 2192,"vol. 9, no. 12",Gayathri Mahalingam,Karl Ricanek Jr.,Midori M. Albert,,,,,,,,,,,https://ieeexplore.ieee.org/document/6915725,
+hollywood_headset,HollywoodHeads,Context-aware CNNs for person head detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+hrt_transgender,HRT Transgender,Is the Eye Region More Reliable Than the Face? A Preliminary Study of Face-based Recognition on a Transgender Dataset,,,,,,,,"In Proc. of IEEE Intl. Conf. on Biometrics: Theory, Applications, and Systems",,,2013,,,Gayathri Mahalingam,Karl Ricanek Jr.,,,,,,,,,,,,https://pdfs.semanticscholar.org/b066/733d533250f4ddafd22c12456def7fa24f4c.pdf,
+hrt_transgender,HRT Transgender,Investigating the Periocular-Based Face Recognition Across Gender Transformation,,,,,,,,IEEE Trans. On Information Forensics and Security,,,2014,pp. 2180 – 2192,"vol. 9, no. 12",Gayathri Mahalingam,Karl Ricanek Jr.,Midori M. Albert,,,,,,,,,,,https://ieeexplore.ieee.org/document/6915725,
hrt_transgender,HRT Transgender,Face recognition across gender transformation using SVM Classifier,,,,"Paper used for statistics, not mentionned in citations",,,,,,,,,,,,,,,,,,,,,,Face_Recognition_Across_Gender_Transformation_Usin.pdf,,
ifad,IFAD,Indian Face Age Database: A Database for Face Recognition with Age Variation,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-ifdb,IFDB,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+ifdb,IFDB,"Iranian Face Database with age, pose and expression",,,,,,,,,,,,,,,,,,,,,,,,,,,,
+ifdb,IFDB,Iranian Face Database and Evaluation with a New Detection Algorithm,,,,,,,,,,,,,,,,,,,,,,,,,,,,
iit_dehli_ear,IIT Dehli Ear,Automated human identification using ear imaging,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ijb_a,IJB-A,Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A ,,,,,,,,Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,,,2015,1931-1939,07-12-June-2015,"Klare, B. F.","Klein, B.","Taborsky, E.","Blanton, A.","Cheney, J.","Allen, K., ... Jain, A. K.",,,,,,,Klare_Pushing_the_Frontiers_2015_CVPR_paper.pdf,http://ieeexplore.ieee.org/document/7298803/,"DOI: 10.1109/CVPR.2015.7298803 @inbook{882e95bdca414797b4a8e2bfcb5b1fa4, title = ""Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A"", @@ -182,7 +188,7 @@ publisher = ""IEEE Computer Society"", "
ijb_b,IJB-B,IARPA Janus Benchmark-B Face Dataset,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ijb_c,IJB-C,IARPA Janus Benchmark C,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-ilids_mcts,,,,,,"government dataset, no paper that introduces the dataset",,,,,,,,,,,,,,,,,,,,,,,,
+ilids_mcts,,"Imagery Library for Intelligent Detection Systems:
The i-LIDS User Guide",,,,,,,,,,,,,,,,,,,,,,,,,,,,
ilids_vid_reid,iLIDS-VID,Person Re-Identication by Video Ranking,,,,,,,,,,,,,,,,,,,,,,,,,,,,
images_of_groups,Images of Groups,Understanding Groups of Images of People,,,,,,,,,,,,,,,,,,,,,,,,,,,,
imdb_wiki,IMDB,Deep expectation of real and apparent age from a single image without facial landmarks,,,,,,,,International Journal of Computer Vision (IJCV),,6,2016,,,Rasmus Rothe,Radu Timofte,Luc Van Gool,,,,,,,,1,,eth_biwi_01299.pdf,,"@article{Rothe-IJCV-2016, @@ -211,11 +217,11 @@ immediacy,Immediacy,Multi-task Recurrent Neural Network for Immediacy Prediction imsitu,imSitu,Situation Recognition: Visual Semantic Role Labeling for Image Understanding,,,,,,,,"(1) Computer Science & Engineering, University of Washington, Seattle, WA (2) Allen Institute for Artificial Intelligence (AI2), Seattle, WA",,,,,,Mark Yatskar,Luke Zettlemoyer,Ali Farhadi,,,,,,,,,,situations.pdf,https://homes.cs.washington.edu/~my89/publications/situations.pdf,
inria_person,INRIA Pedestrian,Histograms of Oriented Gradients for Human Detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-iqiyi,iQIYI-VID dataset ,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+iqiyi,iQIYI-VID dataset ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
jaffe,JAFFE,Coding Facial Expressions with Gabor Wavelets,,,,,,,,3rd IEEE International Conference on Automatic Face and Gesture Recognition,,,1998,200-205,,Michael J. Lyons,Shigeru Akemastu,Miyuki Kamachi,Jiro Gyoba,,,,,,,,,fg98-1.pdf,http://www.kasrl.org/fg98-1.pdf,
jiku_mobile,Jiku Mobile Video Dataset,The Jiku Mobile Video Dataset,,,,,,,,,,,,,,,,,,,,,,,,,,,,
jpl_pose,JPL-Interaction dataset,First-Person Activity Recognition: What Are They Doing to Me?,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-karpathy_instagram,Karpathy Instagram,,,,,no paper / online project,,,,,,,,,,,,,,,,,,,,,,,,
+karpathy_instagram,Karpathy Instagram,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
kdef,KDEF,The Karolinska Directed Emotional Faces – KDEF,,,,"this is the original paper form 1998 with this title, couldn't find it though, so not in nextcloud folder",,,,,,,,,,,,,,,,,,,,,,,,
kin_face,UB KinFace,Genealogical Face Recognition based on UB KinFace Database,,,,"this is the original paper title, couldn't find it though, so not in nextcloud folder",,,,,,,,,,,,,,,,,,,,,,,,
kin_face,UB KinFace,Kinship Verification through Transfer Learning,,,,,,,,,,,,,,,,,,,,,,,,,,,,
@@ -231,7 +237,6 @@ lfw,LFW,Labeled Faces in the Wild: A Database for Studying Face Recognition in U lfw,LFW,Labeled Faces in the Wild: Updates and New Reporting Procedures,,,,,,,, ,,,,,,,,,,,,,,,,,,,,
lfw_a,LFW-a,"Effective Unconstrained Face Recognition by
Combining Multiple Descriptors and Learned
Background Statistics",,,,,,,,"IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 33(10),",,,2011,,,Lior Wolf,Tal Hassner,Yaniv Taigman,,,,,,,,,,jpatchlbp.pdf,http://www.openu.ac.il/home/hassner/projects/Patchlbp/WolfHassnerTaigman_TPAMI11.pdf,Comply with any instructions specified for the original LFW data set
lfw_p,LFWP,Localizing Parts of Faces Using a Consensus of Exemplars,,,,,,,,Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR),,,2011,,,Peter N. Belhumeur,"David W. Jacobs,",David J. Kriegman,Neeraj Kumar,,,,,,,,,nk_cvpr2011_faceparts.pdf,http://neerajkumar.org/projects/face-parts/base/papers/nk_cvpr2011_faceparts.pdf,
-lfwa_plus,LFWA+,,,,,"no paper, no details",,,,,,,,,,,,,,,,,,,,,,,,
m2vts,m2vts,The M2VTS Multimodal Face Database (Release 1.00),,,,,,,,,,,,,,,,,,,,,,,,,,,,
m2vtsdb_extended,xm2vtsdb,XM2VTSDB: The Extended M2VTS Database,,,,,,,,,,,,,,,,,,,,,,,,,,,,
mafl,MAFL,Facial Landmark Detection by Deep Multi-task Learning,,,,,,,,,,,,,,,,,,,,,,,,,,,,
@@ -250,7 +255,7 @@ market1203,Market 1203,Orientation Driven Bag of Appearances for Person Re-ident mars,MARS,MARS: A Video Benchmark for Large-Scale Person Re-identification,,,,,,,,,,,,,,,,,,,,,,,,,,,,
mcgill,McGill Real World,Hierarchical Temporal Graphical Model for Head Pose Estimation and Subsequent Attribute Classification in Real-World Videos,,,,,,,,,,,,,,,,,,,,,,,,,,,,
mcgill,McGill Real World,Robust Semi-automatic Head Pose Labeling for Real-World Face Video Sequences,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-meds,Multiple Encounter Dataset,MEDS: Multiple Encounter Dataset (Deceased Persons),,,,"not a paper, more like a report",,,,,,,,,,,,,,,,,,,,,,,,
+meds,Multiple Encounter Dataset,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
megaage,MegaAge,Quantifying Facial Age by Posterior of Age Comparisons,,,,,,,,,,,,,,,,,,,,,,,,,,,,
megaface,MegaFace,The MegaFace Benchmark: 1 Million Faces for Recognition at Scale ,,,,The 2 papers refer to respectively: MF and MF2 ,,,,IEEE Conference on Computer Vision and Pattern Recognition (CVPR),,,2017,,,"Nech, Aaron","Kemelmacher-Shlizerman, Ira",,,,,,,,,If you're participating or using data from Challenge 2 please cite:,,1705.00393.pdf,https://homes.cs.washington.edu/~kemelmi/ms.pdf,"@inproceedings{nech2017level, title={Level Playing Field For Million Scale Face Recognition}, @@ -260,10 +265,10 @@ year={2017} }"
megaface,MegaFace,Level Playing Field for Million Scale Face Recognition ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
mifs,MIFS,Spoofing Faces Using Makeup: An Investigative Study,,,,,,,,"Proc. of 3rd IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), (New Delhi, India)",,,2017,,,C. Chen,A. Dantcheva,T. Swearingen,A. Ross,,,,,,,,,,http://www.cse.msu.edu/~rossarun/pubs/ChenFaceMakeupSpoof_ISBA2017.pdf,
-mikki,MIKKI dataset,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+mikki,MIKKI dataset,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
mit_cbcl,MIT CBCL,Component-based Face Recognition with 3D Morphable Models,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-mit_cbcl_ped,CBCL,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
-mit_cbclss,CBCLSS,,,,,no paper but PhD Thesis presenting the DB,,,,,,,,,,,,,,,,,,,,,,,,
+mit_cbcl_ped,CBCL,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
+mit_cbclss,CBCLSS,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
miw,MIW,Automatic Facial Makeup Detection with Application in Face Recognition,,,,,,,,"Proc. of 6th IAPR International Conference on Biometrics (ICB), (Madrid, Spain)",,,2013,,,C. Chen,A. Dantcheva,A. Ross,,,,,,,,,,,https://www.cse.msu.edu/~rossarun/pubs/ChenMakeupDetection_ICB2013.pdf,
mmi_facial_expression,MMI Facial Expression Dataset,WEB-BASED DATABASE FOR FACIAL EXPRESSION ANALYSIS,,,,,,,,,,,,,,,,,,,,,,,,,,,,
moments_in_time,Moments in Time,Moments in Time Dataset: one million videos for event understanding,,,,,,,,,,,,,,,,,,,,,,,,,,,,
@@ -285,6 +290,8 @@ msceleb,MsCeleb,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recogn year = {2016}, organization={Springer}}"
msmt_17,MSMT17,Person Trasfer GAN to Bridge Domain Gap for Person Re-Identification,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+mtfl,MTFL,Facial Landmark Detection by Deep Multi-task Learning,,,,same paper as in MAFL,,,,,,,,,,,,,,,,,,,,,,,,
+mtfl,MTFL,Learning Deep Representation for Face Alignment with Auxiliary Attributes,,,,same papers as in MAFL,,,,,,,,,,,,,,,,,,,,,,,,
muct,MUCT,The MUCT Landmarked Face Database,,,,,,,,Pattern Recognition Association of South Africa,,,2010,,,,S. Milborrow,J. Morkel,F. Nicolls,,,,,,,,,,http://www.milbo.org/muct/The-MUCT-Landmarked-Face-Database.pdf,"@article{Milborrow10, author={S. Milborrow and J. Morkel and F. Nicolls}, title={{The MUCT Landmarked Face Database}}, @@ -294,11 +301,9 @@ muct,MUCT,The MUCT Landmarked Face Database,,,,,,,,Pattern Recognition Associati }"
mug_faces,MUG Faces,The MUG Facial Expression Database,,,,,,,,Procedings of 11th International Workshop on Image Analysis for Multimedia Interactive Services,12,4,2010,,,N. Aifanti,C. Papachristou,A. Delopoulos,,,,,,,,,,,,
multi_pie,MULTIPIE,Multi-PIE,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-mtfl,MTFL,Facial Landmark Detection by Deep Multi-task Learning,,,,same paper as in MAFL,,,,,,,,,,,,,,,,,,,,,,,,
-mtfl,MTFL,Learning Deep Representation for Face Alignment with Auxiliary Attributes,,,,same papers as in MAFL,,,,,,,,,,,,,,,,,,,,,,,,
names_and_faces_news,News Dataset,Names and Faces,,,,,,,,,,,,,,,,,,,,,,,,,,,,
nd_2006,ND-2006,Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-nist_mid_mugshot,MID,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+nist_mid_mugshot,MID,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
nova_emotions,Novaemötions Dataset,Crowdsourcing facial expressions for affective-interaction,,,,,,,,,,,,,,,,,,,,,,,,,,,,
nova_emotions,Novaemötions Dataset,Competitive affective gamming: Winning with a smile,,,,,,,,,,,,,,,,,,,,,,,,,,,,
nudedetection,Nude Detection,A Bag-of-Features Approach based on Hue-SIFT Descriptor for Nude Detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
@@ -324,21 +329,21 @@ pubfig_83,pubfig83,Scaling Up Biologically-Inspired Computer Vision: A Case Stud put_face,Put Face,The PUT face database,,,,,,,,,,,,,,,,,,,,,,,,,,,,
qmul_grid,GRID,Multi-Camera Activity Correlation Analysis,,,,,,,,,,,,,,,,,,,,,,,,,,,,
qmul_grid,GRID,Time-delayed correlation analysis for multi-camera activity understanding,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-qmul_ilids,QMUL-iLIDS,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+qmul_ilids,QMUL-iLIDS,,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
qmul_surv_face,QMUL-SurvFace,Surveillance Face Recognition Challenge,,,,,,,,,,,,,,,,,,,,,,,,,,,,
rafd,RaFD,Presentation and validation of the Radboud Faces Database,,,,,,,,Cognition & Emotion,,,2010,1377-1388,24.8,"Langner, O.","Dotsch, R."," Bijlstra, G.","Wigboldus, D.H.J.","Hawk, S.T.","van Knippenberg, A.",,,,,,,,http://dx.doi.org/10.1080/02699930903485076,DOI: 10.1080/02699930903485076
raid,RAiD,Consistent Re-identification in a Camera Network,,,,,,,,,,,,,,,,,,,,,,,,,,,,
rap_pedestrian,RAP,A Richly Annotated Dataset for Pedestrian Attribute Recognition,,,,,,,,,,,,,,,,,,,,,,,,,,,,
reseed,ReSEED,ReSEED: Social Event dEtection Dataset,,,,,,,,,,,,,,,,,,,,,,,,,,,,
saivt,SAIVT SoftBio,A Database for Person Re-Identification in Multi-Camera Surveillance Networks,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-sarc3d,Sarc3D,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+sarc3d,Sarc3D,SARC3D: a new 3D body model for People Tracking and Re-identification,,,,,,,,,,,,,,,,,,,,,,,,,,,,
scface,SCface,SCface – surveillance cameras face database,,,,,,,,,,,,,,,,,,,,,,,,,,,,
scut_fbp,SCUT-FBP,SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception,,,,,,,,arXiv:1511.02459 [cs.CV],,,2015,,,Duorui Xie,Lingyu Liang,Lianwen Jin,Jie Xu,Mengru Li,,,,,,,,,https://arxiv.org/ftp/arxiv/papers/1511/1511.02459.pdf,
scut_head,SCUT HEAD,Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture,,,,,,,,,,,,,,,,,,,,,,,,,,,,
sdu_vid,SDU-VID,A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification,,,,,,,,,,,,,,,,,,,,,,,,,,,,
sdu_vid,SDU-VID,Local descriptors encoded by Fisher vectors for person re-identification,,,,,,,,,,,,,,,,,,,,,,,,,,,,
sdu_vid,SDU-VID,Person reidentification by video ranking,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-sheffield,Sheffield Face,Face Recognition: From Theory to Applications ,,,,paper within a book - no pdf,,,,,,,,,,,,,,,,,,,,,,,,
+sheffield,Sheffield Face,Face Recognition: From Theory to Applications ,,,,OK no paper,,,,,,,,,,,,,,,,,,,,,,,,
shinpuhkan_2014,Shinpuhkan 2014,Shinpuhkan2014: A Multi-Camera Pedestrian Dataset for Tracking People across Multiple Cameras,,,,,,,,,,,,,,,,,,,,,,,,,,,,
social_relation,Social Relation,From Facial Expression Recognition to Interpersonal Relation Prediction,,,,,,,,,,,,,,,,,,,,,,,,,,,,
social_relation,Social Relation,Learning Social Relation Traits from Face Images,,,,,,,,,,,,,,,,,,,,,,,,,,,,
@@ -359,10 +364,10 @@ stickmen_buffy,Buffy Stickmen,Clustered Pose and Nonlinear Appearance Models for stickmen_family,We Are Family Stickmen,We Are Family: Joint Pose Estimation of Multiple Persons,,,,,,,,,,,,,,,,,,,,,,,,,,,,
stickmen_pascal,Stickmen PASCAL,Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation,,,,,,,,,,,,,,,,,,,,,,,,,,,,
stickmen_pascal,Stickmen PASCAL,Learning to Parse Images of Articulated Objects,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-stirling_esrc_3s,Stirling/ESRC 3D Face,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+stirling_esrc_3s,Stirling/ESRC 3D Face,,,,,no paper published yet (they say to cite the URL),,,,,,,,,,,,,,,,,,,,,,,,
sun_attributes,SUN,The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding,,,,,,,,,,,,,,,,,,,,,,,,,,,,
sun_attributes,SUN,"SUN Attribute Database:
Discovering, Annotating, and Recognizing Scene Attributes",,,,,,,,,,,,,,,,,,,,,,,,,,,,
-svs,SVS,,,,,no paper,,,,,,,,,,,,,,,,,,,,,,,,
+svs,SVS,Pedestrian Attribute Classification in Surveillance: Database and Evaluation,,,,,,,,,,,,,,,,,,,,,,,,,,,,
texas_3dfrd,Texas 3DFRD,Texas 3D Face Recognition Database,,,,,,,,,,,,,,,,,,,,,,,,,,,,
texas_3dfrd,Texas 3DFRD,Anthropometric 3D Face Recognition,,,,,,,,,,,,,,,,,,,,,,,,,,,,
tiny_faces,TinyFace,Low-Resolution Face Recognition,,,,,,,,,,,,,,,,,,,,,,,,,,,,
@@ -373,11 +378,10 @@ tud_campus,TUD-Campus, People-Tracking-by-Detection and People-Detection-by-Trac tud_crossing,TUD-Crossing, People-Tracking-by-Detection and People-Detection-by-Tracking,,,,,,,,,,,,,,,,,,,,,,,,,,,,
tud_motionpairs,TUD-Motionparis,Multi-Cue Onboard Pedestrian Detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
tud_multiview,TUD-Multiview,Monocular 3D Pose Estimation and Tracking by Detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-tud_pedestrian,TUD-Pedestrian, People-Tracking-by-Detection and People-Detection-by-Tracking,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+tud_pedestrian,TUD-Pedestrian,People-Tracking-by-Detection and People-Detection-by-Tracking,,,,,,,,,,,,,,,,,,,,,,,,,,,,
tud_stadtmitte,TUD-Stadtmitte,Monocular 3D Pose Estimation and Tracking by Detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
tvhi,TVHI,High Five: Recognising human interactions in TV shows,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-twinsburg_twins,ND-TWINS-2009-2010,,,,,"No Paper. As found in License Agreement: 5.Citation: All documents and papers that report on research that uses the UND Biometrics Database must acknowledge -the use of the database by including the citation as given by the UND Principal Investigator.",,,,,,,,,,,,,,,,,,,,,,,,
+twinsburg_twins,ND-TWINS-2009-2010,,,,,OK No Paper,,,,,,,,,,,,,,,,,,,,,,,,
uccs,UCCS,Large scale unconstrained open set face database,,,,need research access to the paper,,,,,,,,,,,,,,,,,,,,,,,,
ucf_101,UCF101,UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild,,,,,,,,CRCV-TR-12-01,,,2012,,,"Soomro, K.","Roshan Zamir, A.","Shah, M.",,,,,,,,2,,,,"@inproceedings{UCF101, author = {Soomro, K. and Roshan Zamir, A. and Shah, M.}, @@ -385,7 +389,7 @@ ucf_101,UCF101,UCF101: A Dataset of 101 Human Actions Classes From Videos in The title = {{UCF101}: A Dataset of 101 Human Actions Classes From Videos in The Wild}, year = {2012}}"
-ucf_crowd,UCF-CC-50, Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+ucf_crowd,UCF-CC-50,Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ucf_selfie,UCF Selfie,How to Take a Good Selfie?,,,,,,,," in Proceedings of ACM Multimedia Conference 2015 (ACMMM 2015), Brisbane, Australia",,,2015,,,Mahdi M. Kalayeh,Misrak Seifu,Wesna LaLanne,Mubarak Shah,,,,,,,,,,,
ufdd,UFDD,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,,,,,,,,,,,,,,,,,,,,,,,,,,,,
umb,UMB,UMB-DB: A Database of Partially Occluded 3D Faces,,,,,,,,,,,,,,,,,,,,,,,,,,,,
@@ -424,10 +428,10 @@ wider_face,WIDER FACE,WIDER FACE: A Face Detection Benchmark,,,,,,,,IEEE Confere Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, Title = {WIDER FACE: A Face Detection Benchmark}, Year = {2016}}"
-wildtrack,WildTrack, WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-yale_faces,YaleFaces,,,,,no paper,,,,"IEEE Transactions on Pattern Analysis and Machine Intelligence, Special Issue on Face Recognition",,,1997,711--720,17(7),P. N. Bellhumer,J. Hespanha,D. Kriegman,,,,,,,,,,,,
-yale_faces_b,Yale Face Database B,Acquiring Linear Subspaces for Face Recognition under Variable Lighting,,,,,,,,PAMI,,,2001,,,Athinodoros Georghiades,Peter Belhumeur,David Kriegman,,,,,,,,,,,,
-yale_faces_b_ext,Extended Yale Face Database B ,From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+wildtrack,WildTrack,WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+wlfdb,,WLFDB: Weakly Labeled Face Databases,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+yale_faces,YaleFaces,Acquiring Linear Subspaces for Face Recognition under Variable Lighting,,,,"combined yale_faces, yale_faces_b, yale_faces_b_ext",,,,PAMI,,,2001,,,Athinodoros Georghiades,Peter Belhumeur,David Kriegman,,,,,,,,,,,,
+yale_faces,YaleFaces,From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,,,,"combined yale_faces, yale_faces_b, yale_faces_b_ext",,,,,,,,,,,,,,,,,,,,,,,,
yawdd,YawDD,YawDD: A Yawning Detection Dataset,,,,,,,,,,,,,,,,,,,,,,,,,,,,
yfcc_100m,YFCC100M,YFCC100M: The New Data in Multimedia Research,,,,,,,,,,,,,,,,,,,,,,,,,,,,
york_3d,UOY 3D Face Database,Three-Dimensional Face Recognition: An Eigensurface Approach,,,,,,,,,,,,,,,,,,,,,,,,,,,,
|
