diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2019-02-08 23:19:04 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2019-02-08 23:19:04 +0100 |
| commit | 8e26cbff5171fb204082e1b6778d17f786c1eb16 (patch) | |
| tree | f8420a6268d1c624572091881f0b02cf17d0b695 /scraper/reports/paper_title_report.html | |
| parent | 6059ce2eb68a931a4cbb12049c202c3299e4966b (diff) | |
reports of which paper titles matched
Diffstat (limited to 'scraper/reports/paper_title_report.html')
| -rw-r--r-- | scraper/reports/paper_title_report.html | 9 |
1 files changed, 9 insertions, 0 deletions
diff --git a/scraper/reports/paper_title_report.html b/scraper/reports/paper_title_report.html new file mode 100644 index 00000000..2bad68c6 --- /dev/null +++ b/scraper/reports/paper_title_report.html @@ -0,0 +1,9 @@ +<!doctype html><html><head><meta charset='utf-8'><title>Paper Title Sanity Check</title><link rel='stylesheet' href='reports.css'></head><body><h2>Paper Title Sanity Check</h2><table border='1' cellpadding='3' cellspacing='3'><th>key</th><th>name</th><th>our title</th><th>found title</th><th></th><th></th><th>address</th><th>s2 id</th><tr><td>10k_US_adult_faces</td><td>10K US Adult Faces</td><td>The intrinsic memorability of face images</td><td>The intrinsic memorability of face photographs.</td><td><a href="https://pdfs.semanticscholar.org/8b2d/d5c61b23ead5ae5508bb8ce808b5ea266730.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the intrinsic memorability of face images&sort=relevance">[s2]</a></td><td></td><td>8b2dd5c61b23ead5ae5508bb8ce808b5ea266730</td></tr><tr><td>3d_rma</td><td>3D-RMA</td><td>Automatic 3D Face Authentication</td><td>Automatic 3D face authentication</td><td><a href="http://pdfs.semanticscholar.org/2160/788824c4c29ffe213b2cbeb3f52972d73f37.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic 3d face authentication&sort=relevance">[s2]</a></td><td></td><td>2160788824c4c29ffe213b2cbeb3f52972d73f37</td></tr><tr><td>3dddb_unconstrained</td><td>3D Dynamic</td><td>A 3D Dynamic Database for Unconstrained Face Recognition</td><td>Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</td><td><a href="http://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d dynamic database for unconstrained face recognition&sort=relevance">[s2]</a></td><td></td><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td></tr><tr><td>3dpes</td><td>3DPeS</td><td>3DPes: 3D People Dataset for Surveillance and Forensics</td><td>3DPeS: 3D people dataset for surveillance and forensics</td><td><a href="http://doi.acm.org/10.1145/2072572.2072590">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=3dpes: 3d people dataset for surveillance and forensics&sort=relevance">[s2]</a></td><td></td><td>2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e</td></tr><tr><td>4dfab</td><td>4DFAB</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td>4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications</td><td><a href="https://arxiv.org/pdf/1712.01443.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=4dfab: a large scale 4d facial expression database for biometric applications&sort=relevance">[s2]</a></td><td></td><td>9696ad8b164f5e10fcfe23aacf74bd6168aebb15</td></tr><tr><td>50_people_one_question</td><td>50 People One Question</td><td>Merging Pose Estimates Across Space and Time</td><td>Merging Pose Estimates Across Space and Time</td><td><a href="http://pdfs.semanticscholar.org/63b2/f5348af0f969dfc2afb4977732393c6459ec.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=merging pose estimates across space and time&sort=relevance">[s2]</a></td><td></td><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td></tr><tr><td>a_pascal_yahoo</td><td>aPascal</td><td>Describing Objects by their Attributes</td><td>Describing objects by their attributes</td><td><a href="http://www-2.cs.cmu.edu/~dhoiem/publications/cvpr2009_attributes.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing objects by their attributes&sort=relevance">[s2]</a></td><td></td><td>2e384f057211426ac5922f1b33d2aa8df5d51f57</td></tr><tr><td>adience</td><td>Adience</td><td>Age and Gender Estimation of Unfiltered Faces</td><td>Age and Gender Estimation of Unfiltered Faces</td><td><a href="http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=age and gender estimation of unfiltered faces&sort=relevance">[s2]</a></td><td></td><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td></tr><tr><td>afad</td><td>AFAD</td><td>Ordinal Regression with a Multiple Output CNN for Age Estimation</td><td>Ordinal Regression with Multiple Output CNN for Age Estimation</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.532">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ordinal regression with a multiple output cnn for age estimation&sort=relevance">[s2]</a></td><td></td><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td></tr><tr><td>afew_va</td><td>AFEW-VA</td><td>AFEW-VA database for valence and arousal estimation in-the-wild</td><td>Collecting Large, Richly Annotated Facial-Expression Databases from Movies</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6200254">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=afew-va database for valence and arousal estimation in-the-wild&sort=relevance">[s2]</a></td><td>Australian National University</td><td>b1f4423c227fa37b9680787be38857069247a307</td></tr><tr><td>afew_va</td><td>AFEW-VA</td><td>Collecting Large, Richly Annotated Facial-Expression Databases from Movies</td><td>Collecting Large, Richly Annotated Facial-Expression Databases from Movies</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6200254">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=collecting large, richly annotated facial-expression databases from movies&sort=relevance">[s2]</a></td><td>Australian National University</td><td>b1f4423c227fa37b9680787be38857069247a307</td></tr><tr><td>affectnet</td><td>AffectNet</td><td>AffectNet: A New Database for Facial Expression, Valence, and Arousal Computation in the Wild</td><td>Skybiometry and AffectNet on Facial Emotion Recognition Using Supervised Machine Learning Algorithms</td><td><a href="http://dl.acm.org/citation.cfm?id=3232665">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=affectnet: a new database for facial expression, valence, and arousal computation in the wild&sort=relevance">[s2]</a></td><td></td><td>f152b6ee251cca940dd853c54e6a7b78fbc6b235</td></tr><tr><td>aflw</td><td>AFLW</td><td>Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization</td><td>Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</td><td><a href="http://lrs.icg.tugraz.at/pubs/koestinger_befit_11.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization&sort=relevance">[s2]</a></td><td></td><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td></tr><tr><td>afw</td><td>AFW</td><td>Face detection, pose estimation and landmark localization in the wild</td><td>Face detection, pose estimation, and landmark localization in the wild</td><td><a href="http://vision.ics.uci.edu/papers/ZhuR_CVPR_2012/ZhuR_CVPR_2012.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face detection, pose estimation and landmark localization in the wild&sort=relevance">[s2]</a></td><td>University of California, Irvine</td><td>0e986f51fe45b00633de9fd0c94d082d2be51406</td></tr><tr><td>agedb</td><td>AgeDB</td><td>AgeDB: the first manually collected, in-the-wild age database</td><td>AgeDB: The First Manually Collected, In-the-Wild Age Database</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014984">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=agedb: the first manually collected, in-the-wild age database&sort=relevance">[s2]</a></td><td></td><td>6dcf418c778f528b5792104760f1fbfe90c6dd6a</td></tr><tr><td>alert_airport</td><td>ALERT Airport</td><td>A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets</td><td>A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets.</td><td><a href="https://arxiv.org/pdf/1605.09653.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a systematic evaluation and benchmark for person re-identification: features, metrics, and datasets&sort=relevance">[s2]</a></td><td></td><td>6403117f9c005ae81f1e8e6d1302f4a045e3d99d</td></tr><tr><td>am_fed</td><td>AM-FED</td><td>Affectiva MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected “In the Wild”</td><td>Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"</td><td><a href="http://pdfs.semanticscholar.org/5d06/437656dd94616d7d87260d5eb77513ded30f.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=affectiva mit facial expression dataset (am-fed): naturalistic and spontaneous facial expressions collected “in the wild”&sort=relevance">[s2]</a></td><td></td><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td></tr><tr><td>apis</td><td>APiS1.0</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W10/papers/Zhu_Pedestrian_Attribute_Classification_2013_ICCV_paper.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute classification in surveillance: database and evaluation&sort=relevance">[s2]</a></td><td></td><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td></tr><tr><td>ar_facedb</td><td>AR Face</td><td>The AR Face Database</td><td>Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</td><td><a href="http://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the ar face database&sort=relevance">[s2]</a></td><td></td><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td></tr><tr><td>awe_ears</td><td>AWE Ears</td><td>Ear Recognition: More Than a Survey</td><td>Ear Recognition: More Than a Survey</td><td><a href="http://pdfs.semanticscholar.org/84fe/5b4ac805af63206012d29523a1e033bc827e.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ear recognition: more than a survey&sort=relevance">[s2]</a></td><td></td><td>84fe5b4ac805af63206012d29523a1e033bc827e</td></tr><tr><td>b3d_ac</td><td>B3D(AC)</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td>A 3-D Audio-Visual Corpus of Affective Communication</td><td><a href="http://files.is.tue.mpg.de/jgall/download/jgall_avcorpus_mm10.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3-d audio-visual corpus of affective communication&sort=relevance">[s2]</a></td><td></td><td>d08cc366a4a0192a01e9a7495af1eb5d9f9e73ae</td></tr><tr><td>bbc_pose</td><td>BBC Pose</td><td>Automatic and Efficient Human Pose Estimation for Sign Language Videos</td><td>Automatic and Efficient Human Pose Estimation for Sign Language Videos</td><td><a href="https://doi.org/10.1007/s11263-013-0672-6">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic and efficient human pose estimation for sign language videos&sort=relevance">[s2]</a></td><td></td><td>213a579af9e4f57f071b884aa872651372b661fd</td></tr><tr><td>berkeley_pose</td><td>BPAD</td><td>Describing People: A Poselet-Based Approach to Attribute Classification</td><td>Describing people: A poselet-based approach to attribute classification</td><td><a href="http://ttic.uchicago.edu/~smaji/papers/attributes-iccv11.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing people: a poselet-based approach to attribute classification&sort=relevance">[s2]</a></td><td></td><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td></tr><tr><td>bfm</td><td>BFM</td><td>A 3D Face Model for Pose and Illumination Invariant Face Recognition</td><td>A 3D Face Model for Pose and Illumination Invariant Face Recognition</td><td><a href="https://pdfs.semanticscholar.org/6399/37b3a1b8bded3f7e9a40e85bd3770016cf3c.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d face model for pose and illumination invariant face recognition&sort=relevance">[s2]</a></td><td></td><td>639937b3a1b8bded3f7e9a40e85bd3770016cf3c</td></tr><tr><td>bio_id</td><td>BioID Face</td><td>Robust Face Detection Using the Hausdorff Distance</td><td>Robust Face Detection Using the Hausdorff Distance</td><td><a href="http://pdfs.semanticscholar.org/4053/e3423fb70ad9140ca89351df49675197196a.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust face detection using the hausdorff distance&sort=relevance">[s2]</a></td><td></td><td>4053e3423fb70ad9140ca89351df49675197196a</td></tr><tr><td>bjut_3d</td><td>BJUT-3D</td><td>The BJUT-3D Large-Scale Chinese Face Database</td><td>A novel face recognition method based on 3D face model</td><td><a href="https://doi.org/10.1109/ROBIO.2007.4522202">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the bjut-3d large-scale chinese face database&sort=relevance">[s2]</a></td><td></td><td>1ed1a49534ad8dd00f81939449f6389cfbc25321</td></tr><tr><td>bosphorus</td><td>The Bosphorus</td><td>Bosphorus Database for 3D Face Analysis</td><td>Bosphorus Database for 3D Face Analysis</td><td><a href="http://pdfs.semanticscholar.org/4254/fbba3846008f50671edc9cf70b99d7304543.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=bosphorus database for 3d face analysis&sort=relevance">[s2]</a></td><td></td><td>2acf7e58f0a526b957be2099c10aab693f795973</td></tr><tr><td>bp4d_plus</td><td>BP4D+</td><td>Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</td><td>Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis</td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Multimodal_Spontaneous_Emotion_CVPR_2016_paper.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multimodal spontaneous emotion corpus for human behavior analysis&sort=relevance">[s2]</a></td><td></td><td>53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4</td></tr><tr><td>bp4d_spontanous</td><td>BP4D-Spontanous</td><td>A high resolution spontaneous 3D dynamic facial expression database</td><td>A high-resolution spontaneous 3D dynamic facial expression database</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553788">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a high resolution spontaneous 3d dynamic facial expression database&sort=relevance">[s2]</a></td><td>SUNY Binghamton</td><td>b91f54e1581fbbf60392364323d00a0cd43e493c</td></tr><tr><td>brainwash</td><td>Brainwash</td><td>Brainwash dataset</td><td>Brainwash: A Data System for Feature Engineering</td><td><a href="http://pdfs.semanticscholar.org/ae44/8015b2ff2bd3b8a5c9a3266f954f5af9ffa9.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=brainwash dataset&sort=relevance">[s2]</a></td><td></td><td>214c966d1f9c2a4b66f4535d9a0d4078e63a5867</td></tr><tr><td>bu_3dfe</td><td>BU-3DFE</td><td>A 3D Facial Expression Database For Facial Behavior Research</td><td>A 3D facial expression database for facial behavior research</td><td><a href="http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR06_a.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a 3d facial expression database for facial behavior research&sort=relevance">[s2]</a></td><td>SUNY Binghamton</td><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td></tr><tr><td>buhmap_db</td><td>BUHMAP-DB </td><td>Facial Feature Tracking and Expression Recognition for Sign Language</td><td>Facial feature tracking and expression recognition for sign language</td><td><a href="http://www.cmpe.boun.edu.tr/pilab/pilabfiles/databases/buhmap/files/ari2008facialfeaturetracking.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial feature tracking and expression recognition for sign language&sort=relevance">[s2]</a></td><td></td><td>014b8df0180f33b9fea98f34ae611c6447d761d2</td></tr><tr><td>cafe</td><td>CAFE</td><td>The Child Affective Facial Expression (CAFE) Set: Validity and reliability from untrained adults</td><td>The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults</td><td><a href="http://pdfs.semanticscholar.org/2038/8099cc415c772926e47bcbbe554e133343d1.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the child affective facial expression (cafe) set: validity and reliability from untrained adults&sort=relevance">[s2]</a></td><td></td><td>20388099cc415c772926e47bcbbe554e133343d1</td></tr><tr><td>caltech_10k_web_faces</td><td>Caltech 10K Web Faces</td><td>Pruning Training Sets for Learning of Object Categories</td><td>Pruning training sets for learning of object categories</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467308">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pruning training sets for learning of object categories&sort=relevance">[s2]</a></td><td></td><td>636b8ffc09b1b23ff714ac8350bb35635e49fa3c</td></tr><tr><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td>Pedestrian Detection: A Benchmark</td><td>Pedestrian Detection: An Evaluation of the State of the Art</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5975165">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian detection: a benchmark&sort=relevance">[s2]</a></td><td></td><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td></tr><tr><td>caltech_pedestrians</td><td>Caltech Pedestrians</td><td>Pedestrian Detection: An Evaluation of the State of the Art</td><td>Pedestrian Detection: An Evaluation of the State of the Art</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5975165">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian detection: an evaluation of the state of the art&sort=relevance">[s2]</a></td><td></td><td>f72f6a45ee240cc99296a287ff725aaa7e7ebb35</td></tr><tr><td>camel</td><td>CAMEL</td><td>CAMEL Dataset for Visual and Thermal Infrared Multiple Object Detection and Tracking</td><td>Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis</td><td><a href="http://pdfs.semanticscholar.org/5801/690199c1917fa58c35c3dead177c0b8f9f2d.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=camel dataset for visual and thermal infrared multiple object detection and tracking&sort=relevance">[s2]</a></td><td></td><td>5801690199c1917fa58c35c3dead177c0b8f9f2d</td></tr><tr><td>cas_peal</td><td>CAS-PEAL</td><td>The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</td><td>The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</td><td><a href="https://doi.org/10.1109/TSMCA.2007.909557">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cas-peal large-scale chinese face database and baseline evaluations&sort=relevance">[s2]</a></td><td></td><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td></tr><tr><td>casablanca</td><td>Casablanca</td><td>Context-aware {CNNs} for person head detection</td><td>Context-Aware CNNs for Person Head Detection</td><td><a href="http://arxiv.org/pdf/1511.07917v1.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=context-aware {cnns} for person head detection&sort=relevance">[s2]</a></td><td></td><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td></tr><tr><td>casia_webface</td><td>CASIA Webface</td><td>Learning Face Representation from Scratch</td><td>Learning Face Representation from Scratch</td><td><a href="http://pdfs.semanticscholar.org/b8a2/0ed7e74325da76d7183d1ab77b082a92b447.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning face representation from scratch&sort=relevance">[s2]</a></td><td></td><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td></tr><tr><td>celeba</td><td>CelebA</td><td>Deep Learning Face Attributes in the Wild</td><td>Deep Learning Face Attributes in the Wild</td><td><a href="http://arxiv.org/pdf/1411.7766v2.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep learning face attributes in the wild&sort=relevance">[s2]</a></td><td>Chinese University of Hong Kong</td><td>6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4</td></tr><tr><td>celeba_plus</td><td>CelebFaces+</td><td>Deep Learning Face Representation from Predicting 10,000 Classes</td><td>Learning Deep Representation for Imbalanced Classification</td><td><a href="http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2016_imbalanced.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep learning face representation from predicting 10,000 classes&sort=relevance">[s2]</a></td><td>Shenzhen Institutes of Advanced Technology</td><td>69a68f9cf874c69e2232f47808016c2736b90c35</td></tr><tr><td>cfd</td><td>CFD</td><td>The Chicago face database: A free stimulus set of faces and norming data</td><td>The Chicago face database: A free stimulus set of faces and norming data.</td><td><a href="http://pdfs.semanticscholar.org/4df3/143922bcdf7db78eb91e6b5359d6ada004d2.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the chicago face database: a free stimulus set of faces and norming data&sort=relevance">[s2]</a></td><td></td><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td></tr><tr><td>chalearn</td><td>ChaLearn</td><td>ChaLearn Looking at People: A Review of Events and Resources</td><td>ChaLearn looking at people: A review of events and resources</td><td><a href="https://arxiv.org/pdf/1701.02664.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=chalearn looking at people: a review of events and resources&sort=relevance">[s2]</a></td><td></td><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td></tr><tr><td>chokepoint</td><td>ChokePoint</td><td>Patch-based Probabilistic Image Quality Assessment for Face Selection and Improved Video-based Face Recognition</td><td>Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition</td><td><a href="http://conradsanderson.id.au/pdfs/wong_face_selection_cvpr_biometrics_2011.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=patch-based probabilistic image quality assessment for face selection and improved video-based face recognition&sort=relevance">[s2]</a></td><td>University of Queensland</td><td>0486214fb58ee9a04edfe7d6a74c6d0f661a7668</td></tr><tr><td>cityscapes</td><td>Cityscapes</td><td>The Cityscapes Dataset for Semantic Urban Scene Understanding</td><td>The Cityscapes Dataset for Semantic Urban Scene Understanding</td><td><a href="https://arxiv.org/pdf/1604.01685.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cityscapes dataset for semantic urban scene understanding&sort=relevance">[s2]</a></td><td></td><td>32cde90437ab5a70cf003ea36f66f2de0e24b3ab</td></tr><tr><td>cityscapes</td><td>Cityscapes</td><td>The Cityscapes Dataset</td><td>The Cityscapes Dataset for Semantic Urban Scene Understanding</td><td><a href="https://arxiv.org/pdf/1604.01685.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cityscapes dataset&sort=relevance">[s2]</a></td><td></td><td>32cde90437ab5a70cf003ea36f66f2de0e24b3ab</td></tr><tr><td>clothing_co_parsing</td><td>CCP</td><td>Clothing Co-Parsing by Joint Image Segmentation and Labeling</td><td>Clothing Co-parsing by Joint Image Segmentation and Labeling</td><td><a href="https://arxiv.org/pdf/1502.00739v1.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clothing co-parsing by joint image segmentation and labeling&sort=relevance">[s2]</a></td><td></td><td>2bf8541199728262f78d4dced6fb91479b39b738</td></tr><tr><td>cmdp</td><td>CMDP</td><td>Distance Estimation of an Unknown Person from a Portrait</td><td>Distance Estimation of an Unknown Person from a Portrait</td><td><a href="http://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=distance estimation of an unknown person from a portrait&sort=relevance">[s2]</a></td><td>California Institute of Technology</td><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td></tr><tr><td>cmu_pie</td><td>CMU PIE</td><td>The CMU Pose, Illumination, and Expression Database</td><td>The CMU Pose, Illumination, and Expression (PIE) Database</td><td><a href="http://pdfs.semanticscholar.org/4d42/3acc78273b75134e2afd1777ba6d3a398973.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cmu pose, illumination, and expression database&sort=relevance">[s2]</a></td><td></td><td>4d423acc78273b75134e2afd1777ba6d3a398973</td></tr><tr><td>coco</td><td>COCO</td><td>Microsoft COCO: Common Objects in Context</td><td>Microsoft COCO Captions: Data Collection and Evaluation Server</td><td><a href="http://pdfs.semanticscholar.org/ba95/81c33a7eebe87c50e61763e4c8d1723538f2.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=microsoft coco: common objects in context&sort=relevance">[s2]</a></td><td></td><td>696ca58d93f6404fea0fc75c62d1d7b378f47628</td></tr><tr><td>coco_action</td><td>COCO-a</td><td>Describing Common Human Visual Actions in Images</td><td>Describing Common Human Visual Actions in Images</td><td><a href="http://pdfs.semanticscholar.org/b38d/cf5fa5174c0d718d65cc4f3889b03c4a21df.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=describing common human visual actions in images&sort=relevance">[s2]</a></td><td></td><td>4946ba10a4d5a7d0a38372f23e6622bd347ae273</td></tr><tr><td>coco_qa</td><td>COCO QA</td><td>Exploring Models and Data for Image Question Answering</td><td>Exploring Models and Data for Image Question Answering</td><td><a href="http://pdfs.semanticscholar.org/aa79/9c29c0d44ece1864467af520fe70540c069b.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=exploring models and data for image question answering&sort=relevance">[s2]</a></td><td></td><td>35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62</td></tr><tr><td>cofw</td><td>COFW</td><td>Robust face landmark estimation under occlusion</td><td>Robust Face Landmark Estimation under Occlusion</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751298">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust face landmark estimation under occlusion&sort=relevance">[s2]</a></td><td></td><td>2724ba85ec4a66de18da33925e537f3902f21249</td></tr><tr><td>cohn_kanade</td><td>CK</td><td>Comprehensive Database for Facial Expression Analysis</td><td>Comprehensive Database for Facial Expression Analysis</td><td><a href="http://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=comprehensive database for facial expression analysis&sort=relevance">[s2]</a></td><td>Carnegie Mellon University</td><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td></tr><tr><td>cohn_kanade_plus</td><td>CK+</td><td>The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</td><td>The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression</td><td><a href="http://www.iainm.com/iainm/Publications_files/2010_The%20Extended.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression&sort=relevance">[s2]</a></td><td></td><td>4d9a02d080636e9666c4d1cc438b9893391ec6c7</td></tr><tr><td>columbia_gaze</td><td>Columbia Gaze</td><td>Gaze Locking: Passive Eye Contact Detection for Human–Object Interaction</td><td>A 3D Morphable Eye Region Model for Gaze Estimation</td><td><a href="https://pdfs.semanticscholar.org/0d43/3b9435b874a1eea6d7999e86986c910fa285.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=gaze locking: passive eye contact detection for human–object interaction&sort=relevance">[s2]</a></td><td>Carnegie Mellon University</td><td>c34532fe6bfbd1e6df477c9ffdbb043b77e7804d</td></tr><tr><td>complex_activities</td><td>Ongoing Complex Activities</td><td>Recognition of Ongoing Complex Activities by Sequence Prediction over a Hierarchical Label Space</td><td>Recognition of ongoing complex activities by sequence prediction over a hierarchical label space</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477586">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognition of ongoing complex activities by sequence prediction over a hierarchical label space&sort=relevance">[s2]</a></td><td></td><td>65355cbb581a219bd7461d48b3afd115263ea760</td></tr><tr><td>cuhk01</td><td>CUHK01</td><td>Human Reidentification with Transferred Metric Learning</td><td>Human Reidentification with Transferred Metric Learning</td><td><a href="http://pdfs.semanticscholar.org/4448/4d2866f222bbb9b6b0870890f9eea1ffb2d0.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=human reidentification with transferred metric learning&sort=relevance">[s2]</a></td><td></td><td>44484d2866f222bbb9b6b0870890f9eea1ffb2d0</td></tr><tr><td>cuhk02</td><td>CUHK02</td><td>Locally Aligned Feature Transforms across Views</td><td>Locally Aligned Feature Transforms across Views</td><td><a href="http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d594.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=locally aligned feature transforms across views&sort=relevance">[s2]</a></td><td></td><td>38b55d95189c5e69cf4ab45098a48fba407609b4</td></tr><tr><td>cuhk03</td><td>CUHK03</td><td>DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</td><td>DeepReID: Deep Filter Pairing Neural Network for Person Re-identification</td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deepreid: deep filter pairing neural network for person re-identification&sort=relevance">[s2]</a></td><td></td><td>6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3</td></tr><tr><td>cvc_01_barcelona</td><td>CVC-01</td><td>Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection</td><td>Adaptive Image Sampling and Windows Classification for On – board Pedestrian Detection</td><td><a href="http://pdfs.semanticscholar.org/57fe/081950f21ca03b5b375ae3e84b399c015861.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=adaptive image sampling and windows classification for on-board pedestrian detection&sort=relevance">[s2]</a></td><td></td><td>57fe081950f21ca03b5b375ae3e84b399c015861</td></tr><tr><td>czech_news_agency</td><td>UFI</td><td>Unconstrained Facial Images: Database for Face Recognition under Real-world Conditions</td><td>Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions</td><td><a href="http://pdfs.semanticscholar.org/4b41/06614c1d553365bad75d7866bff0de6056ed.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=unconstrained facial images: database for face recognition under real-world conditions&sort=relevance">[s2]</a></td><td></td><td>4b4106614c1d553365bad75d7866bff0de6056ed</td></tr><tr><td>d3dfacs</td><td>D3DFACS</td><td>A FACS Valid 3D Dynamic Action Unit database with Applications to 3D Dynamic Morphable Facial Modelling</td><td>A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling</td><td><a href="http://www.cs.bath.ac.uk/~dpc/D3DFACS/ICCV_final_2011.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a facs valid 3d dynamic action unit database with applications to 3d dynamic morphable facial modelling&sort=relevance">[s2]</a></td><td>Jacobs University</td><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td></tr><tr><td>dartmouth_children</td><td>Dartmouth Children</td><td>The Dartmouth Database of Children's Faces: Acquisition and validation of a new face stimulus set</td><td>The Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set</td><td><a href="http://pdfs.semanticscholar.org/4e6e/e936eb50dd032f7138702fa39b7c18ee8907.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the dartmouth database of children's faces: acquisition and validation of a new face stimulus set&sort=relevance">[s2]</a></td><td></td><td>4e6ee936eb50dd032f7138702fa39b7c18ee8907</td></tr><tr><td>data_61</td><td>Data61 Pedestrian</td><td>A Multi-Modal Graphical Model for Scene Analysis</td><td>A Multi-modal Graphical Model for Scene Analysis</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/WACV.2015.139">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a multi-modal graphical model for scene analysis&sort=relevance">[s2]</a></td><td></td><td>563c940054e4b456661762c1ab858e6f730c3159</td></tr><tr><td>deep_fashion</td><td>DeepFashion</td><td>DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations</td><td>Fashion Landmark Detection in the Wild</td><td><a href="http://pdfs.semanticscholar.org/d8ca/e259c1c5bba0c096f480dc7322bbaebfac1a.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deepfashion: powering robust clothes recognition and retrieval with rich annotations&sort=relevance">[s2]</a></td><td>Chinese University of Hong Kong</td><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td></tr><tr><td>deep_fashion</td><td>DeepFashion</td><td>Fashion Landmark Detection in the Wild</td><td>Fashion Landmark Detection in the Wild</td><td><a href="http://pdfs.semanticscholar.org/d8ca/e259c1c5bba0c096f480dc7322bbaebfac1a.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fashion landmark detection in the wild&sort=relevance">[s2]</a></td><td>Chinese University of Hong Kong</td><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td></tr><tr><td>disfa</td><td>DISFA</td><td>DISFA: A Spontaneous Facial Action Intensity Database</td><td>Extended DISFA Dataset: Investigating Posed and Spontaneous Facial Expressions</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789672">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=disfa: a spontaneous facial action intensity database&sort=relevance">[s2]</a></td><td></td><td>a5acda0e8c0937bfed013e6382da127103e41395</td></tr><tr><td>distance_nighttime</td><td>Long Distance Heterogeneous Face</td><td>Nighttime Face Recognition at Long Distance: Cross-distance and Cross-spectral Matching</td><td>Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching</td><td><a href="http://pdfs.semanticscholar.org/4156/b7e88f2e0ab0a7c095b9bab199ae2b23bd06.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=nighttime face recognition at long distance: cross-distance and cross-spectral matching&sort=relevance">[s2]</a></td><td></td><td>4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06</td></tr><tr><td>duke_mtmc</td><td>Duke MTMC</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td><a href="http://pdfs.semanticscholar.org/b5f2/4f49f9a5e47d6601399dc068158ad88d7651.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=performance measures and a data set for multi-target, multi-camera tracking&sort=relevance">[s2]</a></td><td></td><td>27a2fad58dd8727e280f97036e0d2bc55ef5424c</td></tr><tr><td>emotio_net</td><td>EmotioNet Database</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td>EmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780969">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=emotionet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild&sort=relevance">[s2]</a></td><td></td><td>c900e0ad4c95948baaf0acd8449fde26f9b4952a</td></tr><tr><td>eth_andreas_ess</td><td>ETHZ Pedestrian</td><td>Depth and Appearance for Mobile Scene Analysis</td><td>Depth and Appearance for Mobile Scene Analysis</td><td><a href="http://www.mmp.rwth-aachen.de/publications/pdf/ess-depthandappearance-iccv07.pdf/at_download/file">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=depth and appearance for mobile scene analysis&sort=relevance">[s2]</a></td><td></td><td>13f06b08f371ba8b5d31c3e288b4deb61335b462</td></tr><tr><td>europersons</td><td>EuroCity Persons</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td>The EuroCity Persons Dataset: A Novel Benchmark for Object Detection</td><td><a href="https://arxiv.org/pdf/1805.07193.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the eurocity persons dataset: a novel benchmark for object detection&sort=relevance">[s2]</a></td><td></td><td>f0e17f27f029db4ad650ff278fe3c10ecb6cb0c4</td></tr><tr><td>expw</td><td>ExpW</td><td>Learning Social Relation Traits from Face Images</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td><a href="http://arxiv.org/abs/1609.06426">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning social relation traits from face images&sort=relevance">[s2]</a></td><td></td><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td></tr><tr><td>expw</td><td>ExpW</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td><a href="http://arxiv.org/abs/1609.06426">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from facial expression recognition to interpersonal relation prediction&sort=relevance">[s2]</a></td><td></td><td>22f656d0f8426c84a33a267977f511f127bfd7f3</td></tr><tr><td>face_research_lab</td><td>Face Research Lab London</td><td>Face Research Lab London Set. figshare</td><td>Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.</td><td><a href="http://pdfs.semanticscholar.org/c652/6dd3060d63a6c90e8b7ff340383c4e0e0dd8.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face research lab london set. figshare&sort=relevance">[s2]</a></td><td>University College London</td><td>c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8</td></tr><tr><td>face_scrub</td><td>FaceScrub</td><td>A data-driven approach to cleaning large face datasets</td><td>A data-driven approach to cleaning large face datasets</td><td><a href="https://doi.org/10.1109/ICIP.2014.7025068">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a data-driven approach to cleaning large face datasets&sort=relevance">[s2]</a></td><td>University of Illinois, Urbana-Champaign</td><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td></tr><tr><td>face_tracer</td><td>FaceTracer</td><td>FaceTracer: A Search Engine for Large Collections of Images with Faces</td><td>Face swapping: automatically replacing faces in photographs</td><td><a href="https://classes.cs.uoregon.edu/16F/cis607photo/faces.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facetracer: a search engine for large collections of images with faces&sort=relevance">[s2]</a></td><td>Columbia University</td><td>670637d0303a863c1548d5b19f705860a23e285c</td></tr><tr><td>face_tracer</td><td>FaceTracer</td><td>Face Swapping: Automatically Replacing Faces in Photographs</td><td>Face swapping: automatically replacing faces in photographs</td><td><a href="https://classes.cs.uoregon.edu/16F/cis607photo/faces.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face swapping: automatically replacing faces in photographs&sort=relevance">[s2]</a></td><td>Columbia University</td><td>670637d0303a863c1548d5b19f705860a23e285c</td></tr><tr><td>facebook_100</td><td>Facebook100</td><td>Scaling Up Biologically-Inspired Computer Vision: A Case Study in Unconstrained Face Recognition on Facebook</td><td>Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981788">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scaling up biologically-inspired computer vision: a case study in unconstrained face recognition on facebook&sort=relevance">[s2]</a></td><td>Harvard University</td><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td></tr><tr><td>faceplace</td><td>Face Place</td><td>Recognizing disguised faces</td><td>Recognizing disguised faces</td><td><a href="http://pdfs.semanticscholar.org/d936/7ceb0be378c3a9ddf7cb741c678c1a3c574c.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognizing disguised faces&sort=relevance">[s2]</a></td><td></td><td>25474c21613607f6bb7687a281d5f9d4ffa1f9f3</td></tr><tr><td>families_in_the_wild</td><td>FIW</td><td>Visual Kinship Recognition of Families in the Wild</td><td>Visual Kinship Recognition of Families in the Wild</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337841">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=visual kinship recognition of families in the wild&sort=relevance">[s2]</a></td><td></td><td>dd65f71dac86e36eecbd3ed225d016c3336b4a13</td></tr><tr><td>fddb</td><td>FDDB</td><td>FDDB: A Benchmark for Face Detection in Unconstrained Settings</td><td>A Benchmark for Face Detection in Unconstrained Settings</td><td><a href="http://pdfs.semanticscholar.org/75da/1df4ed319926c544eefe17ec8d720feef8c0.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fddb: a benchmark for face detection in unconstrained settings&sort=relevance">[s2]</a></td><td>University of Massachusetts</td><td>75da1df4ed319926c544eefe17ec8d720feef8c0</td></tr><tr><td>fei</td><td>FEI</td><td>Captura e Alinhamento de Imagens: Um Banco de Faces Brasileiro</td><td>Generalização cartográfica automatizada para um banco de dados cadastral</td><td><a href="https://pdfs.semanticscholar.org/b6b1/b0632eb9d4ab1427278f5e5c46f97753c73d.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=captura e alinhamento de imagens: um banco de faces brasileiro&sort=relevance">[s2]</a></td><td></td><td>b6b1b0632eb9d4ab1427278f5e5c46f97753c73d</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET Verification Testing Protocol for Face Recognition Algorithms</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td><a href="http://pdfs.semanticscholar.org/0f0f/cf041559703998abf310e56f8a2f90ee6f21.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret verification testing protocol for face recognition algorithms&sort=relevance">[s2]</a></td><td></td><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET database and evaluation procedure for face-recognition algorithms</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td><a href="http://pdfs.semanticscholar.org/0f0f/cf041559703998abf310e56f8a2f90ee6f21.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret database and evaluation procedure for face-recognition algorithms&sort=relevance">[s2]</a></td><td></td><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td></tr><tr><td>feret</td><td>FERET</td><td>FERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td><a href="http://pdfs.semanticscholar.org/0f0f/cf041559703998abf310e56f8a2f90ee6f21.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=feret ( face recognition technology ) recognition algorithm development and test results&sort=relevance">[s2]</a></td><td></td><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td></tr><tr><td>feret</td><td>FERET</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td>The FERET Evaluation Methodology for Face-Recognition Algorithms</td><td><a href="http://pdfs.semanticscholar.org/0f0f/cf041559703998abf310e56f8a2f90ee6f21.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the feret evaluation methodology for face-recognition algorithms&sort=relevance">[s2]</a></td><td></td><td>0f0fcf041559703998abf310e56f8a2f90ee6f21</td></tr><tr><td>ferplus</td><td>FER+</td><td>Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution</td><td>Training deep networks for facial expression recognition with crowd-sourced label distribution</td><td><a href="http://arxiv.org/pdf/1608.01041v1.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=training deep networks for facial expression recognition with crowd-sourced label distribution&sort=relevance">[s2]</a></td><td></td><td>298cbc3dfbbb3a20af4eed97906650a4ea1c29e0</td></tr><tr><td>fia</td><td>CMU FiA</td><td>The CMU Face In Action (FIA) Database</td><td>The CMU Face In Action (FIA) Database</td><td><a href="http://pdfs.semanticscholar.org/bb47/a03401811f9d2ca2da12138697acbc7b97a3.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the cmu face in action (fia) database&sort=relevance">[s2]</a></td><td></td><td>47662d1a368daf70ba70ef2d59eb6209f98b675d</td></tr><tr><td>fiw_300</td><td>300-W</td><td>300 faces In-the-wild challenge: Database and results</td><td>A Semi-automatic Methodology for Facial Landmark Annotation</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=300 faces in-the-wild challenge: database and results&sort=relevance">[s2]</a></td><td>University of Twente</td><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td></tr><tr><td>fiw_300</td><td>300-W</td><td>300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge</td><td>A Semi-automatic Methodology for Facial Landmark Annotation</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=300 faces in-the-wild challenge: the first facial landmark localization challenge&sort=relevance">[s2]</a></td><td>University of Twente</td><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td></tr><tr><td>fiw_300</td><td>300-W</td><td>A semi-automatic methodology for facial landmark annotation</td><td>A Semi-automatic Methodology for Facial Landmark Annotation</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_cvpr_2013_amfg_w.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a semi-automatic methodology for facial landmark annotation&sort=relevance">[s2]</a></td><td>University of Twente</td><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td></tr><tr><td>frav3d</td><td>FRAV3D</td><td>MULTIMODAL 2D, 2.5D & 3D FACE VERIFICATION</td><td>2D and 3D face recognition: A survey</td><td><a href="http://pdfs.semanticscholar.org/2f5d/44dc3e1b5955942133ff872ebd31716ec604.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multimodal 2d, 2.5d & 3d face verification&sort=relevance">[s2]</a></td><td></td><td>2f5d44dc3e1b5955942133ff872ebd31716ec604</td></tr><tr><td>frgc</td><td>FRGC</td><td>Overview of the Face Recognition Grand Challenge</td><td>Overview of the face recognition grand challenge</td><td><a href="http://www3.nd.edu/~kwb/PhillipsEtAlCVPR_2005.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=overview of the face recognition grand challenge&sort=relevance">[s2]</a></td><td></td><td>18ae7c9a4bbc832b8b14bc4122070d7939f5e00e</td></tr><tr><td>gallagher</td><td>Gallagher</td><td>Clothing Cosegmentation for Recognizing People</td><td>Clothing Cosegmentation for Shopping Images With Cluttered Background</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7423747">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clothing cosegmentation for recognizing people&sort=relevance">[s2]</a></td><td></td><td>6dbe8e5121c534339d6e41f8683e85f87e6abf81</td></tr><tr><td>gavab_db</td><td>Gavab</td><td>GavabDB: a 3D face database</td><td>Expression invariant 3D face recognition with a Morphable Model</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813376">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=gavabdb: a 3d face database&sort=relevance">[s2]</a></td><td></td><td>42505464808dfb446f521fc6ff2cfeffd4d68ff1</td></tr><tr><td>geofaces</td><td>GeoFaces</td><td>GeoFaceExplorer: Exploring the Geo-Dependence of Facial Attributes</td><td>GeoFaceExplorer: exploring the geo-dependence of facial attributes</td><td><a href="http://doi.acm.org/10.1145/2676440.2676443">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=geofaceexplorer: exploring the geo-dependence of facial attributes&sort=relevance">[s2]</a></td><td>University of Kentucky</td><td>17b46e2dad927836c689d6787ddb3387c6159ece</td></tr><tr><td>georgia_tech_face_database</td><td>Georgia Tech Face</td><td>Maximum likelihood training of the embedded HMM for face detection and recognition</td><td>MAXIMUM LIKELIHOOD TRAINING OF THE EMBEDDED HMM FOR FACE DETECTION AND RECOGNITION Ara V. Ne an and Monson H. Hayes III Center for Signal and Image Processing School of Electrical and Computer Engineering</td><td><a href="http://pdfs.semanticscholar.org/3dc3/f0b64ef80f573e3a5f96e456e52ee980b877.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=maximum likelihood training of the embedded hmm for face detection and recognition&sort=relevance">[s2]</a></td><td></td><td>3dc3f0b64ef80f573e3a5f96e456e52ee980b877</td></tr><tr><td>graz</td><td>Graz Pedestrian</td><td>Generic Object Recognition with Boosting</td><td>Object recognition using segmentation for feature detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=generic object recognition with boosting&sort=relevance">[s2]</a></td><td></td><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td></tr><tr><td>graz</td><td>Graz Pedestrian</td><td>Weak Hypotheses and Boosting for Generic Object Detection and Recognition</td><td>Object recognition using segmentation for feature detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=weak hypotheses and boosting for generic object detection and recognition&sort=relevance">[s2]</a></td><td></td><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td></tr><tr><td>graz</td><td>Graz Pedestrian</td><td>Object Recognition Using Segmentation for Feature Detection</td><td>Object recognition using segmentation for feature detection</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=object recognition using segmentation for feature detection&sort=relevance">[s2]</a></td><td></td><td>12ad3b5bbbf407f8e54ea692c07633d1a867c566</td></tr><tr><td>h3d</td><td>H3D</td><td>Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations</td><td>Poselets: Body part detectors trained using 3D human pose annotations</td><td><a href="http://vision.stanford.edu/teaching/cs231b_spring1213/papers/ICCV09_BourdevMalik.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=poselets: body part detectors trained using 3d human pose annotations&sort=relevance">[s2]</a></td><td></td><td>2830fb5282de23d7784b4b4bc37065d27839a412</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>The HDA+ data set for research on fully automated re-identification systems</td><td>HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</td><td><a href="http://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the hda+ data set for research on fully automated re-identification systems&sort=relevance">[s2]</a></td><td></td><td>bd88bb2e4f351352d88ee7375af834360e223498</td></tr><tr><td>hda_plus</td><td>HDA+</td><td>A Multi-camera video data set for research on High-Definition surveillance</td><td>HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance</td><td><a href="http://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a multi-camera video data set for research on high-definition surveillance&sort=relevance">[s2]</a></td><td></td><td>bd88bb2e4f351352d88ee7375af834360e223498</td></tr><tr><td>helen</td><td>Helen</td><td>Interactive Facial Feature Localization</td><td>Interactive Facial Feature Localization</td><td><a href="http://pdfs.semanticscholar.org/95f1/2d27c3b4914e0668a268360948bce92f7db3.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=interactive facial feature localization&sort=relevance">[s2]</a></td><td>University of Illinois, Urbana-Champaign</td><td>95f12d27c3b4914e0668a268360948bce92f7db3</td></tr><tr><td>hi4d_adsip</td><td>Hi4D-ADSIP</td><td>Hi4D-ADSIP 3-D dynamic facial articulation database</td><td>High-resolution comprehensive 3-D dynamic database for facial articulation analysis</td><td><a href="http://www.researchgate.net/profile/Wei_Quan3/publication/221430048_High-resolution_comprehensive_3-D_dynamic_database_for_facial_articulation_analysis/links/0deec534309495805d000000.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hi4d-adsip 3-d dynamic facial articulation database&sort=relevance">[s2]</a></td><td></td><td>24830e3979d4ed01b9fd0feebf4a8fd22e0c35fd</td></tr><tr><td>hipsterwars</td><td>Hipsterwars</td><td>Hipster Wars: Discovering Elements of Fashion Styles</td><td>Hipster Wars: Discovering Elements of Fashion Styles</td><td><a href="http://pdfs.semanticscholar.org/04c2/cda00e5536f4b1508cbd80041e9552880e67.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hipster wars: discovering elements of fashion styles&sort=relevance">[s2]</a></td><td>Tohoku University</td><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td></tr><tr><td>hollywood_headset</td><td>HollywoodHeads</td><td>Context-aware CNNs for person head detection</td><td>Context-Aware CNNs for Person Head Detection</td><td><a href="http://arxiv.org/pdf/1511.07917v1.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=context-aware cnns for person head detection&sort=relevance">[s2]</a></td><td></td><td>0ceda9dae8b9f322df65ca2ef02caca9758aec6f</td></tr><tr><td>hrt_transgender</td><td>HRT Transgender</td><td>Is the Eye Region More Reliable Than the Face? A Preliminary Study of Face-based Recognition on a Transgender Dataset</td><td>Face recognition: A literature survey</td><td><a href="http://pdfs.semanticscholar.org/2831/2c3a47c1be3a67365700744d3d6665b86f22.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=is the eye region more reliable than the face? a preliminary study of face-based recognition on a transgender dataset&sort=relevance">[s2]</a></td><td></td><td>28312c3a47c1be3a67365700744d3d6665b86f22</td></tr><tr><td>hrt_transgender</td><td>HRT Transgender</td><td>Investigating the Periocular-Based Face Recognition Across Gender Transformation</td><td>Face recognition: A literature survey</td><td><a href="http://pdfs.semanticscholar.org/2831/2c3a47c1be3a67365700744d3d6665b86f22.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=investigating the periocular-based face recognition across gender transformation&sort=relevance">[s2]</a></td><td></td><td>28312c3a47c1be3a67365700744d3d6665b86f22</td></tr><tr><td>hrt_transgender</td><td>HRT Transgender</td><td>Face recognition across gender transformation using SVM Classifier</td><td>Face recognition: A literature survey</td><td><a href="http://pdfs.semanticscholar.org/2831/2c3a47c1be3a67365700744d3d6665b86f22.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face recognition across gender transformation using svm classifier&sort=relevance">[s2]</a></td><td></td><td>28312c3a47c1be3a67365700744d3d6665b86f22</td></tr><tr><td>ifad</td><td>IFAD</td><td>Indian Face Age Database: A Database for Face Recognition with Age Variation</td><td>Indian Face Age Database : A Database for Face Recognition with Age Variation</td><td><a href="https://pdfs.semanticscholar.org/55c4/0cbcf49a0225e72d911d762c27bb1c2d14aa.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=indian face age database: a database for face recognition with age variation&sort=relevance">[s2]</a></td><td></td><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td></tr><tr><td>ifdb</td><td>IFDB</td><td>Iranian Face Database with age, pose and expression</td><td>Iranian Face Database and Evaluation with a New Detection Algorithm</td><td><a href="http://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iranian face database with age, pose and expression&sort=relevance">[s2]</a></td><td></td><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td></tr><tr><td>ifdb</td><td>IFDB</td><td>Iranian Face Database and Evaluation with a New Detection Algorithm</td><td>Iranian Face Database and Evaluation with a New Detection Algorithm</td><td><a href="http://pdfs.semanticscholar.org/066d/71fcd997033dce4ca58df924397dfe0b5fd1.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iranian face database and evaluation with a new detection algorithm&sort=relevance">[s2]</a></td><td></td><td>066d71fcd997033dce4ca58df924397dfe0b5fd1</td></tr><tr><td>iit_dehli_ear</td><td>IIT Dehli Ear</td><td>Automated human identification using ear imaging</td><td>Automated Human Identification Using Ear Imaging</td><td><a href="https://pdfs.semanticscholar.org/faf4/0ce28857aedf183e193486f5b4b0a8c478a2.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automated human identification using ear imaging&sort=relevance">[s2]</a></td><td></td><td>faf40ce28857aedf183e193486f5b4b0a8c478a2</td></tr><tr><td>ijb_a</td><td>IJB-A</td><td>Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A</td><td>Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A</td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pushing the frontiers of unconstrained face detection and recognition: iarpa janus benchmark a&sort=relevance">[s2]</a></td><td></td><td>140c95e53c619eac594d70f6369f518adfea12ef</td></tr><tr><td>ijb_b</td><td>IJB-B</td><td>IARPA Janus Benchmark-B Face Dataset</td><td>IARPA Janus Benchmark-B Face Dataset</td><td><a href="http://www.vislab.ucr.edu/Biometrics2017/program_slides/Noblis_CVPRW_IJBB.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iarpa janus benchmark-b face dataset&sort=relevance">[s2]</a></td><td></td><td>0cb2dd5f178e3a297a0c33068961018659d0f443</td></tr><tr><td>ijb_c</td><td>IJB-C</td><td>IARPA Janus Benchmark C</td><td>IARPA Janus Benchmark - C: Face Dataset and Protocol</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8411217">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=iarpa janus benchmark c&sort=relevance">[s2]</a></td><td></td><td>57178b36c21fd7f4529ac6748614bb3374714e91</td></tr><tr><td>ilids_mcts</td><td></td><td>Imagery Library for Intelligent Detection Systems: +The i-LIDS User Guide</td><td>Imagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=imagery library for intelligent detection systems: +the i-lids user guide&sort=relevance">[s2]</a></td><td></td><td>0297448f3ed948e136bb06ceff10eccb34e5bb77</td></tr><tr><td>ilids_vid_reid</td><td>iLIDS-VID</td><td>Person Re-Identication by Video Ranking</td><td>Person Re-identification by Exploiting Spatio-Temporal Cues and Multi-view Metric Learning</td><td><a href="https://doi.org/10.1109/LSP.2016.2574323">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identication by video ranking&sort=relevance">[s2]</a></td><td></td><td>99eb4cea0d9bc9fe777a5c5172f8638a37a7f262</td></tr><tr><td>images_of_groups</td><td>Images of Groups</td><td>Understanding Groups of Images of People</td><td>Understanding images of groups of people</td><td><a href="http://amp.ece.cmu.edu/people/Andy/Andy_files/cvpr09.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=understanding groups of images of people&sort=relevance">[s2]</a></td><td></td><td>21d9d0deed16f0ad62a4865e9acf0686f4f15492</td></tr><tr><td>imdb_wiki</td><td>IMDB</td><td>Deep expectation of real and apparent age from a single image without facial landmarks</td><td>DEX: Deep EXpectation of Apparent Age from a Single Image</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep expectation of real and apparent age from a single image without facial landmarks&sort=relevance">[s2]</a></td><td></td><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td></tr><tr><td>imdb_wiki</td><td>IMDB</td><td>DEX: Deep EXpectation of apparent age from a single image</td><td>DEX: Deep EXpectation of Apparent Age from a Single Image</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=dex: deep expectation of apparent age from a single image&sort=relevance">[s2]</a></td><td></td><td>8355d095d3534ef511a9af68a3b2893339e3f96b</td></tr><tr><td>imfdb</td><td>IMFDB</td><td>Indian Movie Face Database: A Benchmark for Face Recognition Under Wide Variations</td><td>Indian Movie Face Database: A benchmark for face recognition under wide variations</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=indian movie face database: a benchmark for face recognition under wide variations&sort=relevance">[s2]</a></td><td></td><td>ca3e88d87e1344d076c964ea89d91a75c417f5ee</td></tr><tr><td>imm_face</td><td>IMM Face Dataset</td><td>The IMM Face Database - An Annotated Dataset of 240 Face Images</td><td>Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</td><td><a href="http://lrs.icg.tugraz.at/pubs/koestinger_befit_11.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the imm face database - an annotated dataset of 240 face images&sort=relevance">[s2]</a></td><td></td><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td></tr><tr><td>immediacy</td><td>Immediacy</td><td>Multi-task Recurrent Neural Network for Immediacy Prediction</td><td>Multi-task Recurrent Neural Network for Immediacy Prediction</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.383">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-task recurrent neural network for immediacy prediction&sort=relevance">[s2]</a></td><td></td><td>1e3df3ca8feab0b36fd293fe689f93bb2aaac591</td></tr><tr><td>imsitu</td><td>imSitu</td><td>Situation Recognition: Visual Semantic Role Labeling for Image Understanding</td><td>Situation Recognition: Visual Semantic Role Labeling for Image Understanding</td><td><a href="http://grail.cs.washington.edu/wp-content/uploads/2016/09/yatskar2016srv.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=situation recognition: visual semantic role labeling for image understanding&sort=relevance">[s2]</a></td><td>University of Washington</td><td>51eba481dac6b229a7490f650dff7b17ce05df73</td></tr><tr><td>inria_person</td><td>INRIA Pedestrian</td><td>Histograms of Oriented Gradients for Human Detection</td><td>Histograms of oriented gradients for human detection</td><td><a href="http://nichol.as/papers/Dalai/Histograms%20of%20oriented%20gradients%20for%20human%20detection.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=histograms of oriented gradients for human detection&sort=relevance">[s2]</a></td><td></td><td>10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5</td></tr><tr><td>jaffe</td><td>JAFFE</td><td>Coding Facial Expressions with Gabor Wavelets</td><td>Coding Facial Expressions with Gabor Wavelets</td><td><a href="http://pdfs.semanticscholar.org/45c3/1cde87258414f33412b3b12fc5bec7cb3ba9.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=coding facial expressions with gabor wavelets&sort=relevance">[s2]</a></td><td>Kyushu University</td><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td></tr><tr><td>jiku_mobile</td><td>Jiku Mobile Video Dataset</td><td>The Jiku Mobile Video Dataset</td><td>A Synchronization Ground Truth for the Jiku Mobile Video Dataset</td><td><a href="http://pdfs.semanticscholar.org/ad62/c6e17bc39b4dec20d32f6ac667ae42d2c118.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the jiku mobile video dataset&sort=relevance">[s2]</a></td><td></td><td>ad62c6e17bc39b4dec20d32f6ac667ae42d2c118</td></tr><tr><td>jpl_pose</td><td>JPL-Interaction dataset</td><td>First-Person Activity Recognition: What Are They Doing to Me?</td><td>First-Person Activity Recognition: What Are They Doing to Me?</td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Ryoo_First-Person_Activity_Recognition_2013_CVPR_paper.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=first-person activity recognition: what are they doing to me?&sort=relevance">[s2]</a></td><td></td><td>1aad2da473888cb7ebc1bfaa15bfa0f1502ce005</td></tr><tr><td>kdef</td><td>KDEF</td><td>The Karolinska Directed Emotional Faces – KDEF</td><td>Gaze fixation and the neural circuitry of face processing in autism</td><td><a href="http://doi.org/10.1038/nn1421">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the karolinska directed emotional faces – kdef&sort=relevance">[s2]</a></td><td></td><td>93884e46c49f7ae1c7c34046fbc28882f2bd6341</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Genealogical Face Recognition based on UB KinFace Database</td><td>Understanding Kin Relationships in a Photo</td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=genealogical face recognition based on ub kinface database&sort=relevance">[s2]</a></td><td></td><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Kinship Verification through Transfer Learning</td><td>Understanding Kin Relationships in a Photo</td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=kinship verification through transfer learning&sort=relevance">[s2]</a></td><td></td><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td></tr><tr><td>kin_face</td><td>UB KinFace</td><td>Understanding Kin Relationships in a Photo</td><td>Understanding Kin Relationships in a Photo</td><td><a href="http://www1.ece.neu.edu/~yunfu/papers/Kinship-TMM.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=understanding kin relationships in a photo&sort=relevance">[s2]</a></td><td></td><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td></tr><tr><td>kinectface</td><td>KinectFaceDB</td><td>KinectFaceDB: A Kinect Database for Face Recognition</td><td>KinectFaceDB: A Kinect Database for Face Recognition</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6866883">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=kinectfacedb: a kinect database for face recognition&sort=relevance">[s2]</a></td><td></td><td>0b440695c822a8e35184fb2f60dcdaa8a6de84ae</td></tr><tr><td>kitti</td><td>KITTI</td><td>Vision meets Robotics: The KITTI Dataset</td><td>The Role of Machine Vision for Intelligent Vehicles</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vision meets robotics: the kitti dataset&sort=relevance">[s2]</a></td><td></td><td>35ba4ebfd017a56b51e967105af9ae273c9b0178</td></tr><tr><td>lag</td><td>LAG</td><td>Large Age-Gap Face Verification by Feature Injection in Deep Networks</td><td>Large age-gap face verification by feature injection in deep networks</td><td><a href="http://pdfs.semanticscholar.org/0d2d/d4fc016cb6a517d8fb43a7cc3ff62964832e.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large age-gap face verification by feature injection in deep networks&sort=relevance">[s2]</a></td><td></td><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td></tr><tr><td>large_scale_person_search</td><td>Large Scale Person Search</td><td>End-to-End Deep Learning for Person Search</td><td>End-to-End Deep Learning for Person Search</td><td><a href="https://pdfs.semanticscholar.org/2161/f6b7ee3c0acc81603b01dc0df689683577b9.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=end-to-end deep learning for person search&sort=relevance">[s2]</a></td><td></td><td>2161f6b7ee3c0acc81603b01dc0df689683577b9</td></tr><tr><td>leeds_sports_pose</td><td>Leeds Sports Pose</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td><a href="http://pdfs.semanticscholar.org/4b1d/23d17476fcf78f4cbadf69fb130b1aa627c0.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance">[s2]</a></td><td></td><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td></tr><tr><td>leeds_sports_pose_extended</td><td>Leeds Sports Pose Extended</td><td>Learning Effective Human Pose Estimation from Inaccurate Annotation</td><td>Learning effective human pose estimation from inaccurate annotation</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995318">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning effective human pose estimation from inaccurate annotation&sort=relevance">[s2]</a></td><td></td><td>4e4746094bf60ee83e40d8597a6191e463b57f76</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: A Survey</td><td>Labeled Faces in the Wild : Updates and New Reporting Procedures</td><td><a href="http://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: a survey&sort=relevance">[s2]</a></td><td>University of Massachusetts</td><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments</td><td>Labeled Faces in the Wild : Updates and New Reporting Procedures</td><td><a href="http://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: a database for studying face recognition in unconstrained environments&sort=relevance">[s2]</a></td><td>University of Massachusetts</td><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td></tr><tr><td>lfw</td><td>LFW</td><td>Labeled Faces in the Wild: Updates and New Reporting Procedures</td><td>Labeled Faces in the Wild : Updates and New Reporting Procedures</td><td><a href="http://pdfs.semanticscholar.org/2d34/82dcff69c7417c7b933f22de606a0e8e42d4.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=labeled faces in the wild: updates and new reporting procedures&sort=relevance">[s2]</a></td><td>University of Massachusetts</td><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td></tr><tr><td>lfw_a</td><td>LFW-a</td><td>Effective Unconstrained Face Recognition by + Combining Multiple Descriptors and Learned + Background Statistics</td><td>Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.230">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=effective unconstrained face recognition by + combining multiple descriptors and learned + background statistics&sort=relevance">[s2]</a></td><td></td><td>133f01aec1534604d184d56de866a4bd531dac87</td></tr><tr><td>lfw_p</td><td>LFWP</td><td>Localizing Parts of Faces Using a Consensus of Exemplars</td><td>Localizing Parts of Faces Using a Consensus of Exemplars</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/CVPR.2011.5995602">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=localizing parts of faces using a consensus of exemplars&sort=relevance">[s2]</a></td><td>Columbia University</td><td>140438a77a771a8fb656b39a78ff488066eb6b50</td></tr><tr><td>m2vts</td><td>m2vts</td><td>The M2VTS Multimodal Face Database (Release 1.00)</td><td>The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations</td><td><a href="https://doi.org/10.1109/TSMCA.2007.909557">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the m2vts multimodal face database (release 1.00)&sort=relevance">[s2]</a></td><td></td><td>2485c98aa44131d1a2f7d1355b1e372f2bb148ad</td></tr><tr><td>m2vtsdb_extended</td><td>xm2vtsdb</td><td>XM2VTSDB: The Extended M2VTS Database</td><td>Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</td><td><a href="http://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=xm2vtsdb: the extended m2vts database&sort=relevance">[s2]</a></td><td></td><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td></tr><tr><td>mafl</td><td>MAFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><a href="https://arxiv.org/pdf/1408.3967.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>mafl</td><td>MAFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><a href="https://arxiv.org/pdf/1408.3967.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>malf</td><td>MALF</td><td>Fine-grained Evaluation on Face Detection in the Wild.</td><td>Fine-grained evaluation on face detection in the wild</td><td><a href="http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=fine-grained evaluation on face detection in the wild.&sort=relevance">[s2]</a></td><td>Chinese Academy of Sciences</td><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td></tr><tr><td>mapillary</td><td>Mapillary</td><td>The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</td><td>The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237796">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mapillary vistas dataset for semantic understanding of street scenes&sort=relevance">[s2]</a></td><td></td><td>79828e6e9f137a583082b8b5a9dfce0c301989b8</td></tr><tr><td>market_1501</td><td>Market 1501</td><td>Scalable Person Re-identification: A Benchmark</td><td>Scalable Person Re-identification: A Benchmark</td><td><a href="https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/ICCV15-ReIDDataset.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scalable person re-identification: a benchmark&sort=relevance">[s2]</a></td><td></td><td>4308bd8c28e37e2ed9a3fcfe74d5436cce34b410</td></tr><tr><td>market1203</td><td>Market 1203</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="http://pdfs.semanticscholar.org/a7fe/834a0af614ce6b50dc093132b031dd9a856b.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>mars</td><td>MARS</td><td>MARS: A Video Benchmark for Large-Scale Person Re-identification</td><td>MARS: A Video Benchmark for Large-Scale Person Re-Identification</td><td><a href="http://pdfs.semanticscholar.org/c038/7e788a52f10bf35d4d50659cfa515d89fbec.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=mars: a video benchmark for large-scale person re-identification&sort=relevance">[s2]</a></td><td></td><td>c0387e788a52f10bf35d4d50659cfa515d89fbec</td></tr><tr><td>mcgill</td><td>McGill Real World</td><td>Hierarchical Temporal Graphical Model for Head Pose Estimation and Subsequent Attribute Classification in Real-World Videos</td><td>Robust semi-automatic head pose labeling for real-world face video sequences</td><td><a href="https://doi.org/10.1007/s11042-012-1352-1">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos&sort=relevance">[s2]</a></td><td>McGill University</td><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td></tr><tr><td>mcgill</td><td>McGill Real World</td><td>Robust Semi-automatic Head Pose Labeling for Real-World Face Video Sequences</td><td>Robust semi-automatic head pose labeling for real-world face video sequences</td><td><a href="https://doi.org/10.1007/s11042-012-1352-1">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=robust semi-automatic head pose labeling for real-world face video sequences&sort=relevance">[s2]</a></td><td>McGill University</td><td>c570d1247e337f91e555c3be0e8c8a5aba539d9f</td></tr><tr><td>megaage</td><td>MegaAge</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td>Quantifying Facial Age by Posterior of Age Comparisons</td><td><a href="https://arxiv.org/pdf/1708.09687.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=quantifying facial age by posterior of age comparisons&sort=relevance">[s2]</a></td><td>Chinese University of Hong Kong</td><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td></tr><tr><td>megaface</td><td>MegaFace</td><td>The MegaFace Benchmark: 1 Million Faces for Recognition at Scale</td><td>Level Playing Field for Million Scale Face Recognition</td><td><a href="https://arxiv.org/pdf/1705.00393.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the megaface benchmark: 1 million faces for recognition at scale&sort=relevance">[s2]</a></td><td></td><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td></tr><tr><td>megaface</td><td>MegaFace</td><td>Level Playing Field for Million Scale Face Recognition</td><td>Level Playing Field for Million Scale Face Recognition</td><td><a href="https://arxiv.org/pdf/1705.00393.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=level playing field for million scale face recognition&sort=relevance">[s2]</a></td><td></td><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td></tr><tr><td>mifs</td><td>MIFS</td><td>Spoofing Faces Using Makeup: An Investigative Study</td><td>Spoofing faces using makeup: An investigative study</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7947686">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=spoofing faces using makeup: an investigative study&sort=relevance">[s2]</a></td><td>INRIA Méditerranée</td><td>23e824d1dfc33f3780dd18076284f07bd99f1c43</td></tr><tr><td>mit_cbcl</td><td>MIT CBCL</td><td>Component-based Face Recognition with 3D Morphable Models</td><td>Component-Based Face Recognition with 3D Morphable Models</td><td><a href="http://www.bheisele.com/avbpa2003.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=component-based face recognition with 3d morphable models&sort=relevance">[s2]</a></td><td></td><td>079a0a3bf5200994e1f972b1b9197bf2f90e87d4</td></tr><tr><td>miw</td><td>MIW</td><td>Automatic Facial Makeup Detection with Application in Face Recognition</td><td>Automatic facial makeup detection with application in face recognition</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612994">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic facial makeup detection with application in face recognition&sort=relevance">[s2]</a></td><td>West Virginia University</td><td>fcc6fe6007c322641796cb8792718641856a22a7</td></tr><tr><td>mmi_facial_expression</td><td>MMI Facial Expression Dataset</td><td>WEB-BASED DATABASE FOR FACIAL EXPRESSION ANALYSIS</td><td>Web-based database for facial expression analysis</td><td><a href="http://ibug.doc.ic.ac.uk/media/uploads/documents/PanticEtAl-ICME2005-final.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=web-based database for facial expression analysis&sort=relevance">[s2]</a></td><td></td><td>2a75f34663a60ab1b04a0049ed1d14335129e908</td></tr><tr><td>moments_in_time</td><td>Moments in Time</td><td>Moments in Time Dataset: one million videos for event understanding</td><td>Moments in Time Dataset: one million videos for event understanding</td><td><a href="https://arxiv.org/pdf/1801.03150.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=moments in time dataset: one million videos for event understanding&sort=relevance">[s2]</a></td><td></td><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td></tr><tr><td>morph</td><td>MORPH Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/FGR.2006.78">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>morph_nc</td><td>MORPH Non-Commercial</td><td>MORPH: A Longitudinal Image Database of Normal Adult Age-Progression</td><td>MORPH: a longitudinal image database of normal adult age-progression</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/FGR.2006.78">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=morph: a longitudinal image database of normal adult age-progression&sort=relevance">[s2]</a></td><td></td><td>9055b155cbabdce3b98e16e5ac9c0edf00f9552f</td></tr><tr><td>mot</td><td>MOT</td><td>Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics</td><td>Learning to associate: HybridBoosted multi-target tracker for crowded scene</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=evaluating multiple object tracking performance: the clear mot metrics&sort=relevance">[s2]</a></td><td></td><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td></tr><tr><td>mot</td><td>MOT</td><td>Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking</td><td>Learning to associate: HybridBoosted multi-target tracker for crowded scene</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=performance measures and a data set for multi-target, multi-camera tracking&sort=relevance">[s2]</a></td><td></td><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td></tr><tr><td>mot</td><td>MOT</td><td>Learning to associate: HybridBoosted multi-target tracker for crowded scene</td><td>Learning to associate: HybridBoosted multi-target tracker for crowded scene</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to associate: hybridboosted multi-target tracker for crowded scene&sort=relevance">[s2]</a></td><td></td><td>5981e6479c3fd4e31644db35d236bfb84ae46514</td></tr><tr><td>mpi_large</td><td>Large MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="http://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>mpi_small</td><td>Small MPI Facial Expression</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td>The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions</td><td><a href="http://pdfs.semanticscholar.org/ea05/0801199f98a1c7c1df6769f23f658299a3ae.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mpi facial expression database — a validated database of emotional and conversational facial expressions&sort=relevance">[s2]</a></td><td></td><td>ea050801199f98a1c7c1df6769f23f658299a3ae</td></tr><tr><td>mpii_gaze</td><td>MPIIGaze</td><td>Appearance-based Gaze Estimation in the Wild</td><td>Appearance-based gaze estimation in the wild</td><td><a href="https://scalable.mpi-inf.mpg.de/files/2015/09/zhang_CVPR15.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=appearance-based gaze estimation in the wild&sort=relevance">[s2]</a></td><td>Max Planck Institute for Informatics</td><td>0df0d1adea39a5bef318b74faa37de7f3e00b452</td></tr><tr><td>mpii_human_pose</td><td>MPII Human Pose</td><td>2D Human Pose Estimation: New Benchmark and State of the Art Analysis</td><td>2D Human Pose Estimation: New Benchmark and State of the Art Analysis</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909866">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=2d human pose estimation: new benchmark and state of the art analysis&sort=relevance">[s2]</a></td><td></td><td>3325860c0c82a93b2eac654f5324dd6a776f609e</td></tr><tr><td>mr2</td><td>MR2</td><td>The MR2: A multi-racial mega-resolution database of facial stimuli</td><td>The MR2: A multi-racial, mega-resolution database of facial stimuli.</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mr2: a multi-racial mega-resolution database of facial stimuli&sort=relevance">[s2]</a></td><td></td><td>578d4ad74818086bb64f182f72e2c8bd31e3d426</td></tr><tr><td>mrp_drone</td><td>MRP Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td>Investigating Open-World Person Re-identification Using a Drone</td><td><a href="http://pdfs.semanticscholar.org/ad01/687649d95cd5b56d7399a9603c4b8e2217d7.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=investigating open-world person re-identification using a drone&sort=relevance">[s2]</a></td><td></td><td>ad01687649d95cd5b56d7399a9603c4b8e2217d7</td></tr><tr><td>msceleb</td><td>MsCeleb</td><td>MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</td><td>MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition</td><td><a href="http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ms-celeb-1m: a dataset and benchmark for large-scale face recognition&sort=relevance">[s2]</a></td><td></td><td>291265db88023e92bb8c8e6390438e5da148e8f5</td></tr><tr><td>msmt_17</td><td>MSMT17</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</td><td>Person Transfer GAN to Bridge Domain Gap for Person Re-Identification</td><td><a href="https://arxiv.org/pdf/1711.08565.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person transfer gan to bridge domain gap for person re-identification&sort=relevance">[s2]</a></td><td></td><td>ec792ad2433b6579f2566c932ee414111e194537</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Facial Landmark Detection by Deep Multi-task Learning</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><a href="https://arxiv.org/pdf/1408.3967.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=facial landmark detection by deep multi-task learning&sort=relevance">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>mtfl</td><td>MTFL</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td>Learning Deep Representation for Face Alignment with Auxiliary Attributes</td><td><a href="https://arxiv.org/pdf/1408.3967.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning deep representation for face alignment with auxiliary attributes&sort=relevance">[s2]</a></td><td></td><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td></tr><tr><td>muct</td><td>MUCT</td><td>The MUCT Landmarked Face Database</td><td>Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization</td><td><a href="http://lrs.icg.tugraz.at/pubs/koestinger_befit_11.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the muct landmarked face database&sort=relevance">[s2]</a></td><td></td><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td></tr><tr><td>mug_faces</td><td>MUG Faces</td><td>The MUG Facial Expression Database</td><td>The MUG facial expression database</td><td><a href="http://ieeexplore.ieee.org/document/5617662/">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the mug facial expression database&sort=relevance">[s2]</a></td><td>Aristotle University of Thessaloniki</td><td>f1af714b92372c8e606485a3982eab2f16772ad8</td></tr><tr><td>multi_pie</td><td>MULTIPIE</td><td>Multi-PIE</td><td>Scheduling heterogeneous multi-cores through performance impact estimation (PIE)</td><td><a href="http://dl.acm.org/citation.cfm?id=2337184">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-pie&sort=relevance">[s2]</a></td><td></td><td>109df0e8e5969ddf01e073143e83599228a1163f</td></tr><tr><td>names_and_faces_news</td><td>News Dataset</td><td>Names and Faces</td><td>Names and faces in the news</td><td><a href="http://www.cs.utexas.edu/~grauman/courses/spring2007/395T/papers/berg_names_and_faces.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=names and faces&sort=relevance">[s2]</a></td><td></td><td>2fda164863a06a92d3a910b96eef927269aeb730</td></tr><tr><td>nd_2006</td><td>ND-2006</td><td>Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</td><td>Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401928">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=using a multi-instance enrollment representation to improve 3d face recognition&sort=relevance">[s2]</a></td><td></td><td>fd8168f1c50de85bac58a8d328df0a50248b16ae</td></tr><tr><td>nova_emotions</td><td>Novaemötions Dataset</td><td>Crowdsourcing facial expressions for affective-interaction</td><td>Competitive affective gaming: winning with a smile</td><td><a href="http://doi.acm.org/10.1145/2502081.2502115">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=crowdsourcing facial expressions for affective-interaction&sort=relevance">[s2]</a></td><td></td><td>7f4040b482d16354d5938c1d1b926b544652bf5b</td></tr><tr><td>nova_emotions</td><td>Novaemötions Dataset</td><td>Competitive affective gamming: Winning with a smile</td><td>Competitive affective gaming: winning with a smile</td><td><a href="http://doi.acm.org/10.1145/2502081.2502115">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=competitive affective gamming: winning with a smile&sort=relevance">[s2]</a></td><td></td><td>7f4040b482d16354d5938c1d1b926b544652bf5b</td></tr><tr><td>nudedetection</td><td>Nude Detection</td><td>A Bag-of-Features Approach based on Hue-SIFT Descriptor for Nude Detection</td><td>A bag-of-features approach based on Hue-SIFT descriptor for nude detection</td><td><a href="http://ieeexplore.ieee.org/document/7077625/">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a bag-of-features approach based on hue-sift descriptor for nude detection&sort=relevance">[s2]</a></td><td></td><td>7ace44190729927e5cb0dd5d363fcae966fe13f7</td></tr><tr><td>orl</td><td>ORL</td><td>Parameterisation of a Stochastic Model for Human Face Identification</td><td>Parameterisation of a stochastic model for human face identification</td><td><a href="http://pdfs.semanticscholar.org/5520/6f0b5f57ce17358999145506cd01e570358c.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=parameterisation of a stochastic model for human face identification&sort=relevance">[s2]</a></td><td></td><td>55206f0b5f57ce17358999145506cd01e570358c</td></tr><tr><td>penn_fudan</td><td>Penn Fudan</td><td>Object Detection Combining Recognition and Segmentation</td><td>Object Detection Combining Recognition and Segmentation</td><td><a href="http://pdfs.semanticscholar.org/f531/a554cade14b9b340de6730683a28c292dd74.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=object detection combining recognition and segmentation&sort=relevance">[s2]</a></td><td></td><td>3394168ff0719b03ff65bcea35336a76b21fe5e4</td></tr><tr><td>peta</td><td>PETA</td><td>Pedestrian Attribute Recognition At Far Distance</td><td>Pedestrian Attribute Recognition At Far Distance</td><td><a href="http://personal.ie.cuhk.edu.hk/~pluo/pdf/mm14.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute recognition at far distance&sort=relevance">[s2]</a></td><td></td><td>2a4bbee0b4cf52d5aadbbc662164f7efba89566c</td></tr><tr><td>pets</td><td>PETS 2017</td><td>PETS 2017: Dataset and Challenge</td><td>PETS 2017: Dataset and Challenge</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014998">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pets 2017: dataset and challenge&sort=relevance">[s2]</a></td><td></td><td>22909dd19a0ec3b6065334cb5be5392cb24d839d</td></tr><tr><td>pilot_parliament</td><td>PPB</td><td>Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classication</td><td>Summary of Research on Informant Accuracy in Network Data, 11 and on the Reverse Small World Problem</td><td><a href="http://pdfs.semanticscholar.org/fb82/681ac5d3487bd8e52dbb3d1fa220eeac855e.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=gender shades: intersectional accuracy disparities in commercial gender classication&sort=relevance">[s2]</a></td><td></td><td>fb82681ac5d3487bd8e52dbb3d1fa220eeac855e</td></tr><tr><td>pipa</td><td>PIPA</td><td>Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues</td><td>Beyond frontal faces: Improving Person Recognition using multiple cues</td><td><a href="https://doi.org/10.1109/CVPR.2015.7299113">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=beyond frontal faces: improving person recognition using multiple cues&sort=relevance">[s2]</a></td><td></td><td>0a85bdff552615643dd74646ac881862a7c7072d</td></tr><tr><td>pku</td><td>PKU</td><td>Swiss-System Based Cascade Ranking for Gait-based Person Re-identification</td><td>Swiss-System Based Cascade Ranking for Gait-Based Person Re-Identification</td><td><a href="http://pdfs.semanticscholar.org/f6c8/d5e35d7e4d60a0104f233ac1a3ab757da53f.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=swiss-system based cascade ranking for gait-based person re-identification&sort=relevance">[s2]</a></td><td></td><td>f6c8d5e35d7e4d60a0104f233ac1a3ab757da53f</td></tr><tr><td>pku_reid</td><td>PKU-Reid</td><td>Orientation driven bag of appearances for person re-identification</td><td>Orientation Driven Bag of Appearances for Person Re-identification</td><td><a href="http://pdfs.semanticscholar.org/a7fe/834a0af614ce6b50dc093132b031dd9a856b.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=orientation driven bag of appearances for person re-identification&sort=relevance">[s2]</a></td><td></td><td>a7fe834a0af614ce6b50dc093132b031dd9a856b</td></tr><tr><td>pornodb</td><td>Pornography DB</td><td>Pooling in Image Representation: the Visual Codeword Point of View</td><td>Pooling in image representation: The visual codeword point of view</td><td><a href="http://pdfs.semanticscholar.org/b92a/1ed9622b8268ae3ac9090e25789fc41cc9b8.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pooling in image representation: the visual codeword point of view&sort=relevance">[s2]</a></td><td></td><td>b92a1ed9622b8268ae3ac9090e25789fc41cc9b8</td></tr><tr><td>precarious</td><td>Precarious</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians With Adversarial Imposters</td><td>Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters</td><td><a href="https://arxiv.org/pdf/1703.06283.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=expecting the unexpected: training detectors for unusual pedestrians with adversarial imposters&sort=relevance">[s2]</a></td><td></td><td>9e5378e7b336c89735d3bb15cf67eff96f86d39a</td></tr><tr><td>prid</td><td>PRID</td><td>Person Re-Identification by Descriptive and Discriminative Classification</td><td>Person Re-identification by Descriptive and Discriminative Classification</td><td><a href="http://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identification by descriptive and discriminative classification&sort=relevance">[s2]</a></td><td></td><td>16c7c31a7553d99f1837fc6e88e77b5ccbb346b8</td></tr><tr><td>prw</td><td>PRW</td><td>Person Re-identification in the Wild</td><td>Person Re-identification in the Wild</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.357">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person re-identification in the wild&sort=relevance">[s2]</a></td><td>University of Technology Sydney</td><td>0b84f07af44f964817675ad961def8a51406dd2e</td></tr><tr><td>psu</td><td>PSU</td><td>Vision-based Analysis of Small Groups in Pedestrian Crowds</td><td>Vision-Based Analysis of Small Groups in Pedestrian Crowds</td><td><a href="http://vision.cse.psu.edu/publications/pdfs/GeCollinsRubackPAMI2011.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vision-based analysis of small groups in pedestrian crowds&sort=relevance">[s2]</a></td><td></td><td>066000d44d6691d27202896691f08b27117918b9</td></tr><tr><td>pubfig</td><td>PubFig</td><td>Attribute and Simile Classifiers for Face Verification</td><td>Attribute and simile classifiers for face verification</td><td><a href="http://homes.cs.washington.edu/~neeraj/projects/faceverification/base/papers/nk_iccv2009_attrs.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=attribute and simile classifiers for face verification&sort=relevance">[s2]</a></td><td>Columbia University</td><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td></tr><tr><td>pubfig_83</td><td>pubfig83</td><td>Scaling Up Biologically-Inspired Computer Vision: A Case Study in Unconstrained Face Recognition on Facebook</td><td>Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981788">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scaling up biologically-inspired computer vision: a case study in unconstrained face recognition on facebook&sort=relevance">[s2]</a></td><td>Harvard University</td><td>9c23859ec7313f2e756a3e85575735e0c52249f4</td></tr><tr><td>put_face</td><td>Put Face</td><td>The PUT face database</td><td>Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments</td><td><a href="http://pdfs.semanticscholar.org/c6b3/ca4f939e36a9679a70e14ce8b1bbbc5618f3.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the put face database&sort=relevance">[s2]</a></td><td></td><td>370b5757a5379b15e30d619e4d3fb9e8e13f3256</td></tr><tr><td>qmul_grid</td><td>GRID</td><td>Multi-Camera Activity Correlation Analysis</td><td>Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding</td><td><a href="https://doi.org/10.1007/s11263-010-0347-5">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-camera activity correlation analysis&sort=relevance">[s2]</a></td><td></td><td>2edb87494278ad11641b6cf7a3f8996de12b8e14</td></tr><tr><td>qmul_grid</td><td>GRID</td><td>Time-delayed correlation analysis for multi-camera activity understanding</td><td>Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding</td><td><a href="https://doi.org/10.1007/s11263-010-0347-5">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=time-delayed correlation analysis for multi-camera activity understanding&sort=relevance">[s2]</a></td><td></td><td>2edb87494278ad11641b6cf7a3f8996de12b8e14</td></tr><tr><td>qmul_surv_face</td><td>QMUL-SurvFace</td><td>Surveillance Face Recognition Challenge</td><td>Surveillance Face Recognition Challenge</td><td><a href="https://arxiv.org/pdf/1804.09691.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=surveillance face recognition challenge&sort=relevance">[s2]</a></td><td></td><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td></tr><tr><td>rafd</td><td>RaFD</td><td>Presentation and validation of the Radboud Faces Database</td><td>Presentation and validation of the Radboud Faces Database</td><td><a href="https://pdfs.semanticscholar.org/3765/df816dc5a061bc261e190acc8bdd9d47bec0.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=presentation and validation of the radboud faces database&sort=relevance">[s2]</a></td><td></td><td>3765df816dc5a061bc261e190acc8bdd9d47bec0</td></tr><tr><td>raid</td><td>RAiD</td><td>Consistent Re-identification in a Camera Network</td><td>Consistent Re-identification in a Camera Network</td><td><a href="http://pdfs.semanticscholar.org/c27f/099e6e7e3f7f9979cbe9e0a5175fc5848ea0.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=consistent re-identification in a camera network&sort=relevance">[s2]</a></td><td></td><td>09d78009687bec46e70efcf39d4612822e61cb8c</td></tr><tr><td>rap_pedestrian</td><td>RAP</td><td>A Richly Annotated Dataset for Pedestrian Attribute Recognition</td><td>A Richly Annotated Dataset for Pedestrian Attribute Recognition</td><td><a href="http://pdfs.semanticscholar.org/221c/18238b829c12b911706947ab38fd017acef7.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a richly annotated dataset for pedestrian attribute recognition&sort=relevance">[s2]</a></td><td></td><td>221c18238b829c12b911706947ab38fd017acef7</td></tr><tr><td>reseed</td><td>ReSEED</td><td>ReSEED: Social Event dEtection Dataset</td><td>ReSEED: social event dEtection dataset</td><td><a href="https://pub.uni-bielefeld.de/download/2663466/2686734">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=reseed: social event detection dataset&sort=relevance">[s2]</a></td><td></td><td>54983972aafc8e149259d913524581357b0f91c3</td></tr><tr><td>saivt</td><td>SAIVT SoftBio</td><td>A Database for Person Re-Identification in Multi-Camera Surveillance Networks</td><td>A Database for Person Re-Identification in Multi-Camera Surveillance Networks</td><td><a href="http://eprints.qut.edu.au/53437/3/Bialkowski_Database4PersonReID_DICTA.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a database for person re-identification in multi-camera surveillance networks&sort=relevance">[s2]</a></td><td></td><td>22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2b</td></tr><tr><td>sarc3d</td><td>Sarc3D</td><td>SARC3D: a new 3D body model for People Tracking and Re-identification</td><td>SARC3D: A New 3D Body Model for People Tracking and Re-identification</td><td><a href="https://pdfs.semanticscholar.org/e27e/f52c641c2b5100a1b34fd0b819e84a31b4df.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sarc3d: a new 3d body model for people tracking and re-identification&sort=relevance">[s2]</a></td><td></td><td>e27ef52c641c2b5100a1b34fd0b819e84a31b4df</td></tr><tr><td>scface</td><td>SCface</td><td>SCface – surveillance cameras face database</td><td>Large Variability Surveillance Camera Face Database</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scface – surveillance cameras face database&sort=relevance">[s2]</a></td><td></td><td>f3b84a03985de3890b400b68e2a92c0a00afd9d0</td></tr><tr><td>scut_fbp</td><td>SCUT-FBP</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td>SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception</td><td><a href="https://arxiv.org/pdf/1511.02459.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=scut-fbp: a benchmark dataset for facial beauty perception&sort=relevance">[s2]</a></td><td>South China University of Technology</td><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td></tr><tr><td>scut_head</td><td>SCUT HEAD</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td>Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=detecting heads using feature refine net and cascaded multi-scale architecture&sort=relevance">[s2]</a></td><td></td><td>dfdcd8c7c91813ba1624c9a21d2d01ef06a49afd</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>A Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=a spatio-temporal appearance representation for video-based pedestrian re-identification&sort=relevance">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>Local descriptors encoded by Fisher vectors for person re-identification</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=local descriptors encoded by fisher vectors for person re-identification&sort=relevance">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>sdu_vid</td><td>SDU-VID</td><td>Person reidentification by video ranking</td><td>Person Re-identification by Video Ranking</td><td><a href="https://pdfs.semanticscholar.org/98bb/029afe2a1239c3fdab517323066f0957b81b.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=person reidentification by video ranking&sort=relevance">[s2]</a></td><td></td><td>98bb029afe2a1239c3fdab517323066f0957b81b</td></tr><tr><td>sheffield</td><td>Sheffield Face</td><td>Face Recognition: From Theory to Applications</td><td>Face Description with Local Binary Patterns: Application to Face Recognition</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.244">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face recognition: from theory to applications&sort=relevance">[s2]</a></td><td></td><td>3607afdb204de9a5a9300ae98aa4635d9effcda2</td></tr><tr><td>social_relation</td><td>Social Relation</td><td>From Facial Expression Recognition to Interpersonal Relation Prediction</td><td>Learning Social Relation Traits from Face Images</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.414">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from facial expression recognition to interpersonal relation prediction&sort=relevance">[s2]</a></td><td>Chinese University of Hong Kong</td><td>2a171f8d14b6b8735001a11c217af9587d095848</td></tr><tr><td>social_relation</td><td>Social Relation</td><td>Learning Social Relation Traits from Face Images</td><td>Learning Social Relation Traits from Face Images</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.414">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning social relation traits from face images&sort=relevance">[s2]</a></td><td>Chinese University of Hong Kong</td><td>2a171f8d14b6b8735001a11c217af9587d095848</td></tr><tr><td>soton</td><td>SOTON HiD</td><td>On a Large Sequence-Based Human Gait Database</td><td>On a large sequence-based human gait database</td><td><a href="http://pdfs.semanticscholar.org/4f93/cd09785c6e77bf4bc5a788e079df524c8d21.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=on a large sequence-based human gait database&sort=relevance">[s2]</a></td><td></td><td>4f93cd09785c6e77bf4bc5a788e079df524c8d21</td></tr><tr><td>sports_videos_in_the_wild</td><td>SVW</td><td>Sports Videos in the Wild (SVW): A Video Dataset for Sports Analysis</td><td>Sports Videos in the Wild (SVW): A video dataset for sports analysis</td><td><a href="http://web.cse.msu.edu/~liuxm/publication/Safdarnejad_Liu_Udpa_Andrus_Wood_Craven_FG2015.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sports videos in the wild (svw): a video dataset for sports analysis&sort=relevance">[s2]</a></td><td>Michigan State University</td><td>1a40092b493c6b8840257ab7f96051d1a4dbfeb2</td></tr><tr><td>stair_actions</td><td>STAIR Action</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td>STAIR Actions: A Video Dataset of Everyday Home Actions</td><td><a href="https://arxiv.org/pdf/1804.04326.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stair actions: a video dataset of everyday home actions&sort=relevance">[s2]</a></td><td></td><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td></tr><tr><td>stanford_drone</td><td>Stanford Drone</td><td>Learning Social Etiquette: Human Trajectory Prediction In Crowded Scenes</td><td>Learning to Predict Human Behavior in Crowded Scenes</td><td><a href="http://pdfs.semanticscholar.org/c9bd/a86e23cab9e4f15ea0c4cbb6cc02b9dfb709.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning social etiquette: human trajectory prediction in crowded scenes&sort=relevance">[s2]</a></td><td></td><td>c9bda86e23cab9e4f15ea0c4cbb6cc02b9dfb709</td></tr><tr><td>stickmen_buffy</td><td>Buffy Stickmen</td><td>Learning to Parse Images of Articulated Objects</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td><a href="http://pdfs.semanticscholar.org/4b1d/23d17476fcf78f4cbadf69fb130b1aa627c0.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to parse images of articulated objects&sort=relevance">[s2]</a></td><td></td><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td></tr><tr><td>stickmen_buffy</td><td>Buffy Stickmen</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td><a href="http://pdfs.semanticscholar.org/4b1d/23d17476fcf78f4cbadf69fb130b1aa627c0.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance">[s2]</a></td><td></td><td>4b1d23d17476fcf78f4cbadf69fb130b1aa627c0</td></tr><tr><td>stickmen_family</td><td>We Are Family Stickmen</td><td>We Are Family: Joint Pose Estimation of Multiple Persons</td><td>We Are Family: Joint Pose Estimation of Multiple Persons</td><td><a href="http://pdfs.semanticscholar.org/0dc1/1a37cadda92886c56a6fb5191ded62099c28.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=we are family: joint pose estimation of multiple persons&sort=relevance">[s2]</a></td><td></td><td>0dc11a37cadda92886c56a6fb5191ded62099c28</td></tr><tr><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td>Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation</td><td>Learning to parse images of articulated bodies</td><td><a href="http://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=clustered pose and nonlinear appearance models for human pose estimation&sort=relevance">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>stickmen_pascal</td><td>Stickmen PASCAL</td><td>Learning to Parse Images of Articulated Objects</td><td>Learning to parse images of articulated bodies</td><td><a href="http://pdfs.semanticscholar.org/9cd7/4c43dbf9be0b9caae4606ee53e6d45850471.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=learning to parse images of articulated objects&sort=relevance">[s2]</a></td><td></td><td>6dd0597f8513dc100cd0bc1b493768cde45098a9</td></tr><tr><td>sun_attributes</td><td>SUN</td><td>The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding</td><td>SUN attribute database: Discovering, annotating, and recognizing scene attributes</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247998">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the sun attribute database: beyond categories for deeper scene understanding&sort=relevance">[s2]</a></td><td></td><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td></tr><tr><td>sun_attributes</td><td>SUN</td><td>SUN Attribute Database: +Discovering, Annotating, and Recognizing Scene Attributes</td><td>SUN attribute database: Discovering, annotating, and recognizing scene attributes</td><td><a href="http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247998">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=sun attribute database: +discovering, annotating, and recognizing scene attributes&sort=relevance">[s2]</a></td><td></td><td>833fa04463d90aab4a9fe2870d480f0b40df446e</td></tr><tr><td>svs</td><td>SVS</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td>Pedestrian Attribute Classification in Surveillance: Database and Evaluation</td><td><a href="http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W10/papers/Zhu_Pedestrian_Attribute_Classification_2013_ICCV_paper.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pedestrian attribute classification in surveillance: database and evaluation&sort=relevance">[s2]</a></td><td></td><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td></tr><tr><td>texas_3dfrd</td><td>Texas 3DFRD</td><td>Texas 3D Face Recognition Database</td><td>Anthropometric 3D Face Recognition</td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=texas 3d face recognition database&sort=relevance">[s2]</a></td><td></td><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td></tr><tr><td>texas_3dfrd</td><td>Texas 3DFRD</td><td>Anthropometric 3D Face Recognition</td><td>Anthropometric 3D Face Recognition</td><td><a href="http://live.ece.utexas.edu/publications/2010/sg_ijcv_june10.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=anthropometric 3d face recognition&sort=relevance">[s2]</a></td><td></td><td>2ce2560cf59db59ce313bbeb004e8ce55c5ce928</td></tr><tr><td>tiny_faces</td><td>TinyFace</td><td>Low-Resolution Face Recognition</td><td>Low-Resolution Face Recognition</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=low-resolution face recognition&sort=relevance">[s2]</a></td><td></td><td>8990cdce3f917dad622e43e033db686b354d057c</td></tr><tr><td>tiny_images</td><td>Tiny Images</td><td>80 million tiny images: a large dataset for non-parametric object and scene recognition</td><td>80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition</td><td><a href="http://pdfs.semanticscholar.org/31b5/8ced31f22eab10bd3ee2d9174e7c14c27c01.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=80 million tiny images: a large dataset for non-parametric object and scene recognition&sort=relevance">[s2]</a></td><td></td><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td></tr><tr><td>towncenter</td><td>TownCenter</td><td>Stable Multi-Target Tracking in Real-Time Surveillance Video</td><td>Stable multi-target tracking in real-time surveillance video</td><td><a href="http://pdfs.semanticscholar.org/9361/b784e73e9238d5cefbea5ac40d35d1e3103f.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=stable multi-target tracking in real-time surveillance video&sort=relevance">[s2]</a></td><td></td><td>9361b784e73e9238d5cefbea5ac40d35d1e3103f</td></tr><tr><td>tud_brussels</td><td>TUD-Brussels</td><td>Multi-Cue Onboard Pedestrian Detection</td><td>Multi-cue onboard pedestrian detection</td><td><a href="https://www.mpi-inf.mpg.de/fileadmin/inf/d2/wojek/poster_cwojek_cvpr09.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-cue onboard pedestrian detection&sort=relevance">[s2]</a></td><td></td><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td></tr><tr><td>tud_campus</td><td>TUD-Campus</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tud_crossing</td><td>TUD-Crossing</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tud_motionpairs</td><td>TUD-Motionparis</td><td>Multi-Cue Onboard Pedestrian Detection</td><td>Multi-cue onboard pedestrian detection</td><td><a href="https://www.mpi-inf.mpg.de/fileadmin/inf/d2/wojek/poster_cwojek_cvpr09.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-cue onboard pedestrian detection&sort=relevance">[s2]</a></td><td></td><td>6ad5a38df8dd4cdddd74f31996ce096d41219f72</td></tr><tr><td>tud_multiview</td><td>TUD-Multiview</td><td>Monocular 3D Pose Estimation and Tracking by Detection</td><td>Monocular 3D pose estimation and tracking by detection</td><td><a href="http://lmb.informatik.uni-freiburg.de/lectures/seminar_brox/seminar_ws1011/cvpr10_andriluka.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=monocular 3d pose estimation and tracking by detection&sort=relevance">[s2]</a></td><td></td><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td></tr><tr><td>tud_pedestrian</td><td>TUD-Pedestrian</td><td>People-Tracking-by-Detection and People-Detection-by-Tracking</td><td>People-tracking-by-detection and people-detection-by-tracking</td><td><a href="http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/243.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=people-tracking-by-detection and people-detection-by-tracking&sort=relevance">[s2]</a></td><td></td><td>3316521a5527c7700af8ae6aef32a79a8b83672c</td></tr><tr><td>tud_stadtmitte</td><td>TUD-Stadtmitte</td><td>Monocular 3D Pose Estimation and Tracking by Detection</td><td>Monocular 3D pose estimation and tracking by detection</td><td><a href="http://lmb.informatik.uni-freiburg.de/lectures/seminar_brox/seminar_ws1011/cvpr10_andriluka.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=monocular 3d pose estimation and tracking by detection&sort=relevance">[s2]</a></td><td></td><td>436f798d1a4e54e5947c1e7d7375c31b2bdb4064</td></tr><tr><td>tvhi</td><td>TVHI</td><td>High Five: Recognising human interactions in TV shows</td><td>High Five: Recognising human interactions in TV shows</td><td><a href="http://pdfs.semanticscholar.org/3cd4/0bfa1ff193a96bde0207e5140a399476466c.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=high five: recognising human interactions in tv shows&sort=relevance">[s2]</a></td><td></td><td>3cd40bfa1ff193a96bde0207e5140a399476466c</td></tr><tr><td>uccs</td><td>UCCS</td><td>Large scale unconstrained open set face database</td><td>Large scale unconstrained open set face database</td><td><a href="http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=large scale unconstrained open set face database&sort=relevance">[s2]</a></td><td>University of Colorado at Colorado Springs</td><td>07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1</td></tr><tr><td>ucf_101</td><td>UCF101</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td>UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild</td><td><a href="https://arxiv.org/pdf/1212.0402.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=ucf101: a dataset of 101 human actions classes from videos in the wild&sort=relevance">[s2]</a></td><td>University of Central Florida</td><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td></tr><tr><td>ucf_crowd</td><td>UCF-CC-50</td><td>Multi-Source Multi-Scale Counting in Extremely Dense Crowd Images</td><td>Multi-source Multi-scale Counting in Extremely Dense Crowd Images</td><td><a href="http://www.cs.ucf.edu/~haroon/datafiles/Idrees_Counting_CVPR_2013.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=multi-source multi-scale counting in extremely dense crowd images&sort=relevance">[s2]</a></td><td></td><td>32c801cb7fbeb742edfd94cccfca4934baec71da</td></tr><tr><td>ucf_selfie</td><td>UCF Selfie</td><td>How to Take a Good Selfie?</td><td>How to Take a Good Selfie?</td><td><a href="http://doi.acm.org/10.1145/2733373.2806365">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=how to take a good selfie?&sort=relevance">[s2]</a></td><td></td><td>041d3eedf5e45ce5c5229f0181c5c576ed1fafd6</td></tr><tr><td>ufdd</td><td>UFDD</td><td>Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</td><td>Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results</td><td><a href="https://arxiv.org/pdf/1804.10275.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=pushing the limits of unconstrained face detection: a challenge dataset and baseline results&sort=relevance">[s2]</a></td><td>Johns Hopkins University</td><td>377f2b65e6a9300448bdccf678cde59449ecd337</td></tr><tr><td>umb</td><td>UMB</td><td>UMB-DB: A Database of Partially Occluded 3D Faces</td><td>UMB-DB: A database of partially occluded 3D faces</td><td><a href="https://doi.org/10.1109/ICCVW.2011.6130509">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=umb-db: a database of partially occluded 3d faces&sort=relevance">[s2]</a></td><td></td><td>16e8b0a1e8451d5f697b94c0c2b32a00abee1d52</td></tr><tr><td>umd_faces</td><td>UMD</td><td>UMDFaces: An Annotated Face Dataset for Training Deep Networks</td><td>Electronic Transport in Quantum Confined Systems</td><td><a href="http://pdfs.semanticscholar.org/447d/8893a4bdc29fa1214e53499ffe67b28a6db5.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=umdfaces: an annotated face dataset for training deep networks&sort=relevance">[s2]</a></td><td></td><td>447d8893a4bdc29fa1214e53499ffe67b28a6db5</td></tr><tr><td>umd_faces</td><td>UMD</td><td>The Do's and Don'ts for CNN-based Face Verification</td><td>Electronic Transport in Quantum Confined Systems</td><td><a href="http://pdfs.semanticscholar.org/447d/8893a4bdc29fa1214e53499ffe67b28a6db5.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the do's and don'ts for cnn-based face verification&sort=relevance">[s2]</a></td><td></td><td>447d8893a4bdc29fa1214e53499ffe67b28a6db5</td></tr><tr><td>unbc_shoulder_pain</td><td>UNBC-McMaster Pain</td><td>PAINFUL DATA: The UNBC-McMaster Shoulder Pain Expression Archive Database</td><td>Painful data: The UNBC-McMaster shoulder pain expression archive database</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5771462">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=painful data: the unbc-mcmaster shoulder pain expression archive database&sort=relevance">[s2]</a></td><td></td><td>56ffa7d906b08d02d6d5a12c7377a57e24ef3391</td></tr><tr><td>urban_tribes</td><td>Urban Tribes</td><td>From Bikers to Surfers: Visual Recognition of Urban Tribes</td><td>From Bikers to Surfers: Visual Recognition of Urban Tribes</td><td><a href="http://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from bikers to surfers: visual recognition of urban tribes&sort=relevance">[s2]</a></td><td>Columbia University</td><td>774cbb45968607a027ae4729077734db000a1ec5</td></tr><tr><td>used</td><td>USED Social Event Dataset</td><td>USED: A Large-scale Social Event Detection Dataset</td><td>USED: a large-scale social event detection dataset</td><td><a href="http://doi.acm.org/10.1145/2910017.2910624">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=used: a large-scale social event detection dataset&sort=relevance">[s2]</a></td><td></td><td>8627f019882b024aef92e4eb9355c499c733e5b7</td></tr><tr><td>v47</td><td>V47</td><td>Re-identification of Pedestrians with Variable Occlusion and Scale</td><td>Re-identification of pedestrians with variable occlusion and scale</td><td><a href="https://doi.org/10.1109/ICCVW.2011.6130477">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=re-identification of pedestrians with variable occlusion and scale&sort=relevance">[s2]</a></td><td></td><td>922e0a51a3b8c67c4c6ac09a577ff674cbd28b34</td></tr><tr><td>vadana</td><td>VADANA</td><td>VADANA: A dense dataset for facial image analysis</td><td>VADANA: A dense dataset for facial image analysis</td><td><a href="http://vims.cis.udel.edu/publications/VADANA_BeFIT2011.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vadana: a dense dataset for facial image analysis&sort=relevance">[s2]</a></td><td></td><td>4563b46d42079242f06567b3f2e2f7a80cb3befe</td></tr><tr><td>vgg_celebs_in_places</td><td>CIP</td><td>Faces in Places: Compound Query Retrieval</td><td>Faces in Places: compound query retrieval</td><td><a href="https://pdfs.semanticscholar.org/7ebb/153704706e457ab57b432793d2b6e5d12592.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=faces in places: compound query retrieval&sort=relevance">[s2]</a></td><td>University of Oxford</td><td>7ebb153704706e457ab57b432793d2b6e5d12592</td></tr><tr><td>vgg_faces</td><td>VGG Face</td><td>Deep Face Recognition</td><td>Deep Face Recognition</td><td><a href="https://pdfs.semanticscholar.org/f372/ab9b3270d4e4f6a0258c83c2736c3a5c0454.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=deep face recognition&sort=relevance">[s2]</a></td><td></td><td>162ea969d1929ed180cc6de9f0bf116993ff6e06</td></tr><tr><td>vgg_faces2</td><td>VGG Face2</td><td>VGGFace2: A dataset for recognising faces across pose and age</td><td>VGGFace2: A Dataset for Recognising Faces across Pose and Age</td><td><a href="https://arxiv.org/pdf/1710.08092.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vggface2: a dataset for recognising faces across pose and age&sort=relevance">[s2]</a></td><td>University of Oxford</td><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td></tr><tr><td>violent_flows</td><td>Violent Flows</td><td>Violent Flows: Real-Time Detection of Violent Crowd Behavior</td><td>Violent flows: Real-time detection of violent crowd behavior</td><td><a href="http://www.wisdom.weizmann.ac.il/mathusers/kliper/Papers/violent_flows.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=violent flows: real-time detection of violent crowd behavior&sort=relevance">[s2]</a></td><td></td><td>5194cbd51f9769ab25260446b4fa17204752e799</td></tr><tr><td>viper</td><td>VIPeR</td><td>Evaluating Appearance Models for Recognition, Reacquisition, and Tracking</td><td>Evaluating Appearance Models for Recognition , Reacquisition , and Tracking</td><td><a href="http://pdfs.semanticscholar.org/6273/b3491e94ea4dd1ce42b791d77bdc96ee73a8.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=evaluating appearance models for recognition, reacquisition, and tracking&sort=relevance">[s2]</a></td><td></td><td>6273b3491e94ea4dd1ce42b791d77bdc96ee73a8</td></tr><tr><td>visual_phrases</td><td>Phrasal Recognition</td><td>Recognition using Visual Phrases</td><td>Recognition using visual phrases</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995711">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognition using visual phrases&sort=relevance">[s2]</a></td><td></td><td>e8de844fefd54541b71c9823416daa238be65546</td></tr><tr><td>vmu</td><td>VMU</td><td>Can Facial Cosmetics Affect the Matching Accuracy of Face Recognition Systems?</td><td>Can facial cosmetics affect the matching accuracy of face recognition systems?</td><td><a href="http://www.cse.msu.edu/~climer/DantchevaChenRossFaceCosmetics_BTAS2012.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=can facial cosmetics affect the matching accuracy of face recognition systems?&sort=relevance">[s2]</a></td><td></td><td>37d6f0eb074d207b53885bd2eb78ccc8a04be597</td></tr><tr><td>voc</td><td>VOC</td><td>The PASCAL Visual Object Classes (VOC) Challenge</td><td>The Pascal Visual Object Classes Challenge: A Retrospective</td><td><a href="http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc14.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=the pascal visual object classes (voc) challenge&sort=relevance">[s2]</a></td><td></td><td>abe9f3b91fd26fa1b50cd685c0d20debfb372f73</td></tr><tr><td>vqa</td><td>VQA</td><td>VQA: Visual Question Answering</td><td>VQA: Visual Question Answering</td><td><a href="http://arxiv.org/pdf/1505.00468v3.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=vqa: visual question answering&sort=relevance">[s2]</a></td><td></td><td>01959ef569f74c286956024866c1d107099199f7</td></tr><tr><td>ward</td><td>WARD</td><td>Re-identify people in wide area camera network</td><td>Re-identify people in wide area camera network</td><td><a href="https://doi.org/10.1109/CVPRW.2012.6239203">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=re-identify people in wide area camera network&sort=relevance">[s2]</a></td><td></td><td>6f3c76b7c0bd8e1d122c6ea808a271fd4749c951</td></tr><tr><td>who_goes_there</td><td>WGT</td><td>Who Goes There? Approaches to Mapping Facial Appearance Diversity</td><td>Who goes there?: approaches to mapping facial appearance diversity</td><td><a href="http://doi.acm.org/10.1145/2996913.2996997">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=who goes there? approaches to mapping facial appearance diversity&sort=relevance">[s2]</a></td><td></td><td>9b9bf5e623cb8af7407d2d2d857bc3f1b531c182</td></tr><tr><td>wider</td><td>WIDER</td><td>Recognize Complex Events from Static Images by Fusing Deep Channels</td><td>Recognize complex events from static images by fusing deep channels</td><td><a href="http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Xiong_Recognize_Complex_Events_2015_CVPR_paper.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=recognize complex events from static images by fusing deep channels&sort=relevance">[s2]</a></td><td>Shenzhen Institutes of Advanced Technology</td><td>356b431d4f7a2a0a38cf971c84568207dcdbf189</td></tr><tr><td>wider_attribute</td><td>WIDER Attribute</td><td>Human Attribute Recognition by Deep Hierarchical Contexts</td><td>Human Attribute Recognition by Deep Hierarchical Contexts</td><td><a href="https://pdfs.semanticscholar.org/8e28/07f2dd53b03a759e372e07f7191cae65c9fd.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=human attribute recognition by deep hierarchical contexts&sort=relevance">[s2]</a></td><td>Chinese University of Hong Kong</td><td>44d23df380af207f5ac5b41459c722c87283e1eb</td></tr><tr><td>wider_face</td><td>WIDER FACE</td><td>WIDER FACE: A Face Detection Benchmark</td><td>WIDER FACE: A Face Detection Benchmark</td><td><a href="https://arxiv.org/pdf/1511.06523.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wider face: a face detection benchmark&sort=relevance">[s2]</a></td><td>Chinese University of Hong Kong</td><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td></tr><tr><td>wildtrack</td><td>WildTrack</td><td>WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</td><td>WILDTRACK : A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection</td><td><a href="https://pdfs.semanticscholar.org/fe1c/ec4e4995b8615855572374ae3efc94949105.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wildtrack: a multi-camera hd dataset for dense unscripted pedestrian detection&sort=relevance">[s2]</a></td><td></td><td>77c81c13a110a341c140995bedb98101b9e84f7f</td></tr><tr><td>wlfdb</td><td></td><td>WLFDB: Weakly Labeled Face Databases</td><td>WLFDB: Weakly Labeled Face Databases</td><td><a href="https://pdfs.semanticscholar.org/5ad4/e9f947c1653c247d418f05dad758a3f9277b.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=wlfdb: weakly labeled face databases&sort=relevance">[s2]</a></td><td></td><td>5ad4e9f947c1653c247d418f05dad758a3f9277b</td></tr><tr><td>yale_faces</td><td>YaleFaces</td><td>Acquiring Linear Subspaces for Face Recognition under Variable Lighting</td><td>From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</td><td><a href="http://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=acquiring linear subspaces for face recognition under variable lighting&sort=relevance">[s2]</a></td><td></td><td>18c72175ddbb7d5956d180b65a96005c100f6014</td></tr><tr><td>yale_faces</td><td>YaleFaces</td><td>From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</td><td>From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose</td><td><a href="http://pdfs.semanticscholar.org/97bb/c2b439a79d4dc0dc7199d71ed96ad5e3fd0e.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=from few to many: illumination cone models for face recognition under variable lighting and pose&sort=relevance">[s2]</a></td><td></td><td>18c72175ddbb7d5956d180b65a96005c100f6014</td></tr><tr><td>yawdd</td><td>YawDD</td><td>YawDD: A Yawning Detection Dataset</td><td>YawDD: a yawning detection dataset</td><td><a href="http://www.site.uottawa.ca/~shervin/pubs/CogniVue-Dataset-ACM-MMSys2014.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=yawdd: a yawning detection dataset&sort=relevance">[s2]</a></td><td></td><td>a94cae786d515d3450d48267e12ca954aab791c4</td></tr><tr><td>yfcc_100m</td><td>YFCC100M</td><td>YFCC100M: The New Data in Multimedia Research</td><td>The New Data and New Challenges in Multimedia Research</td><td><span class="gray">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=yfcc100m: the new data in multimedia research&sort=relevance">[s2]</a></td><td></td><td>a6e695ddd07aad719001c0fc1129328452385949</td></tr><tr><td>york_3d</td><td>UOY 3D Face Database</td><td>Three-Dimensional Face Recognition: An Eigensurface Approach</td><td>Three-dimensional face recognition: an eigensurface approach</td><td><a href="http://www-users.cs.york.ac.uk/~nep/research/3Dface/tomh/3DFaceRecognition-Eigensurface-ICIP(web)2.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=three-dimensional face recognition: an eigensurface approach&sort=relevance">[s2]</a></td><td></td><td>19d1b811df60f86cbd5e04a094b07f32fff7a32a</td></tr><tr><td>youtube_faces</td><td>YouTubeFaces</td><td>Face Recognition in Unconstrained Videos with Matched Background Similarity</td><td>Face recognition in unconstrained videos with matched background similarity</td><td><a href="http://www.cs.tau.ac.il/~wolf/papers/lvfw.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=face recognition in unconstrained videos with matched background similarity&sort=relevance">[s2]</a></td><td>Open University of Israel</td><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td></tr><tr><td>youtube_makeup</td><td>YMU</td><td>Can Facial Cosmetics Affect the Matching Accuracy of Face Recognition Systems?</td><td>Automatic facial makeup detection with application in face recognition</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612994">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=can facial cosmetics affect the matching accuracy of face recognition systems?&sort=relevance">[s2]</a></td><td>West Virginia University</td><td>fcc6fe6007c322641796cb8792718641856a22a7</td></tr><tr><td>youtube_makeup</td><td>YMU</td><td>Automatic Facial Makeup Detection with Application in Face Recognition</td><td>Automatic facial makeup detection with application in face recognition</td><td><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6612994">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=automatic facial makeup detection with application in face recognition&sort=relevance">[s2]</a></td><td>West Virginia University</td><td>fcc6fe6007c322641796cb8792718641856a22a7</td></tr><tr><td>youtube_poses</td><td>YouTube Pose</td><td>Personalizing Human Video Pose Estimation</td><td>Personalizing Human Video Pose Estimation</td><td><a href="http://arxiv.org/pdf/1511.06676v1.pdf">[pdf]</a></td><td><a href="https://www.semanticscholar.org/search?q=personalizing human video pose estimation&sort=relevance">[s2]</a></td><td></td><td>1c2802c2199b6d15ecefe7ba0c39bfe44363de38</td></tr></table></body></html>
\ No newline at end of file |
