summaryrefslogtreecommitdiff
path: root/scraper/datasets/scholar/entries/SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception.csv
diff options
context:
space:
mode:
authorAdam Harvey <adam@ahprojects.com>2018-12-23 01:37:03 +0100
committerAdam Harvey <adam@ahprojects.com>2018-12-23 01:37:03 +0100
commit4452e02e8b04f3476273574a875bb60cfbb4568b (patch)
tree3ffa44f9621b736250a8b94da14a187dc785c2fe /scraper/datasets/scholar/entries/SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception.csv
parent2a65f7a157bd4bace970cef73529867b0e0a374d (diff)
parent5340bee951c18910fd764241945f1f136b5a22b4 (diff)
.
Diffstat (limited to 'scraper/datasets/scholar/entries/SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception.csv')
-rw-r--r--scraper/datasets/scholar/entries/SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception.csv1
1 files changed, 1 insertions, 0 deletions
diff --git a/scraper/datasets/scholar/entries/SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception.csv b/scraper/datasets/scholar/entries/SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception.csv
new file mode 100644
index 00000000..9215c287
--- /dev/null
+++ b/scraper/datasets/scholar/entries/SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception.csv
@@ -0,0 +1 @@
+SCUT-FBP: A benchmark dataset for facial beauty perception|http://scholar.google.com/https://arxiv.org/abs/1511.02459|2015|17|4|3066282784180910292|None|http://scholar.google.com/scholar?cites=3066282784180910292&as_sdt=2005&sciodt=0,5&hl=en|http://scholar.google.com/scholar?cluster=3066282784180910292&hl=en&as_sdt=0,5|None|In this paper, a novel face dataset with attractiveness ratings, namely, the SCUT-FBP dataset, is developed for automatic facial beauty perception. This dataset provides a benchmark to evaluate the performance of different methods for facial attractiveness prediction, including the state-of-the-art deep learning method. The SCUT-FBP dataset contains face portraits of 500 Asian female subjects with attractiveness ratings, all of which have been verified in terms of rating distribution, standard deviation, consistency, and self …