summaryrefslogtreecommitdiff
path: root/scraper/datasets/scholar/entries/A semi-automatic methodology for facial landmark annotation.csv
diff options
context:
space:
mode:
authorAdam Harvey <adam@ahprojects.com>2018-12-23 01:37:03 +0100
committerAdam Harvey <adam@ahprojects.com>2018-12-23 01:37:03 +0100
commit4452e02e8b04f3476273574a875bb60cfbb4568b (patch)
tree3ffa44f9621b736250a8b94da14a187dc785c2fe /scraper/datasets/scholar/entries/A semi-automatic methodology for facial landmark annotation.csv
parent2a65f7a157bd4bace970cef73529867b0e0a374d (diff)
parent5340bee951c18910fd764241945f1f136b5a22b4 (diff)
.
Diffstat (limited to 'scraper/datasets/scholar/entries/A semi-automatic methodology for facial landmark annotation.csv')
-rw-r--r--scraper/datasets/scholar/entries/A semi-automatic methodology for facial landmark annotation.csv1
1 files changed, 1 insertions, 0 deletions
diff --git a/scraper/datasets/scholar/entries/A semi-automatic methodology for facial landmark annotation.csv b/scraper/datasets/scholar/entries/A semi-automatic methodology for facial landmark annotation.csv
new file mode 100644
index 00000000..31bf7b39
--- /dev/null
+++ b/scraper/datasets/scholar/entries/A semi-automatic methodology for facial landmark annotation.csv
@@ -0,0 +1 @@
+A semi-automatic methodology for facial landmark annotation|http://scholar.google.com/https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Sagonas_A_Semi-automatic_Methodology_2013_CVPR_paper.pdf|2013|225|16|15744661091744891|http://scholar.google.com/https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Sagonas_A_Semi-automatic_Methodology_2013_CVPR_paper.pdf|http://scholar.google.com/scholar?cites=15744661091744891&as_sdt=2005&sciodt=0,5&hl=en|http://scholar.google.com/scholar?cluster=15744661091744891&hl=en&as_sdt=0,5|None|Developing powerful deformable face models requires massive, annotated face databases on which techniques can be trained, validated and tested. Manual annotation of each facial image in terms of landmarks requires a trained expert and the workload is usually enormous. Fatigue is one of the reasons that in some cases annotations are inaccurate. This is why, the majority of existing facial databases provide annotations for a relatively small subset of the training images. Furthermore, there is hardly any correspondence between the …