summaryrefslogtreecommitdiff
path: root/megapixels/notebooks/datasets/megaface/megapixels_age_nyt.ipynb
diff options
context:
space:
mode:
authorjules@lens <julescarbon@gmail.com>2019-10-10 13:33:31 +0200
committerjules@lens <julescarbon@gmail.com>2019-10-10 13:33:31 +0200
commit7d72cbb935ec53ce66c6a0c5cdc68f157be1d35f (patch)
treea44049683c3c5e44449fe2698bb080329ecf7e61 /megapixels/notebooks/datasets/megaface/megapixels_age_nyt.ipynb
parent488a65aa5caba91c1384e7bcb2023056e913fc22 (diff)
parentcdc0c7ad21eb764cfe36d7583e126660d87fe02d (diff)
Merge branch 'master' of asdf.us:megapixels_dev
Diffstat (limited to 'megapixels/notebooks/datasets/megaface/megapixels_age_nyt.ipynb')
-rw-r--r--megapixels/notebooks/datasets/megaface/megapixels_age_nyt.ipynb214
1 files changed, 214 insertions, 0 deletions
diff --git a/megapixels/notebooks/datasets/megaface/megapixels_age_nyt.ipynb b/megapixels/notebooks/datasets/megaface/megapixels_age_nyt.ipynb
new file mode 100644
index 00000000..b49bcc42
--- /dev/null
+++ b/megapixels/notebooks/datasets/megaface/megapixels_age_nyt.ipynb
@@ -0,0 +1,214 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from os.path import join\n",
+ "import sys\n",
+ "from pathlib import Path\n",
+ "\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "\n",
+ "from PIL import Image\n",
+ "import cv2 as cv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "fp_attr = '/data_store_hdd/datasets/people/megaface/metadata/face_attributes.csv'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv(fp_attr)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "<div>\n",
+ "<style scoped>\n",
+ " .dataframe tbody tr th:only-of-type {\n",
+ " vertical-align: middle;\n",
+ " }\n",
+ "\n",
+ " .dataframe tbody tr th {\n",
+ " vertical-align: top;\n",
+ " }\n",
+ "\n",
+ " .dataframe thead th {\n",
+ " text-align: right;\n",
+ " }\n",
+ "</style>\n",
+ "<table border=\"1\" class=\"dataframe\">\n",
+ " <thead>\n",
+ " <tr style=\"text-align: right;\">\n",
+ " <th></th>\n",
+ " <th>index</th>\n",
+ " <th>age_apparent</th>\n",
+ " <th>age_real</th>\n",
+ " <th>f</th>\n",
+ " <th>m</th>\n",
+ " <th>roi_index</th>\n",
+ " </tr>\n",
+ " </thead>\n",
+ " <tbody>\n",
+ " <tr>\n",
+ " <th>0</th>\n",
+ " <td>0</td>\n",
+ " <td>11.05</td>\n",
+ " <td>18.63</td>\n",
+ " <td>0.8155</td>\n",
+ " <td>0.1845</td>\n",
+ " <td>0</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>1</th>\n",
+ " <td>1</td>\n",
+ " <td>28.59</td>\n",
+ " <td>26.64</td>\n",
+ " <td>0.0219</td>\n",
+ " <td>0.9781</td>\n",
+ " <td>1</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>2</th>\n",
+ " <td>2</td>\n",
+ " <td>12.09</td>\n",
+ " <td>19.08</td>\n",
+ " <td>0.6808</td>\n",
+ " <td>0.3192</td>\n",
+ " <td>2</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>3</th>\n",
+ " <td>3</td>\n",
+ " <td>39.36</td>\n",
+ " <td>51.36</td>\n",
+ " <td>0.9943</td>\n",
+ " <td>0.0057</td>\n",
+ " <td>3</td>\n",
+ " </tr>\n",
+ " <tr>\n",
+ " <th>4</th>\n",
+ " <td>4</td>\n",
+ " <td>41.84</td>\n",
+ " <td>52.25</td>\n",
+ " <td>0.8226</td>\n",
+ " <td>0.1774</td>\n",
+ " <td>4</td>\n",
+ " </tr>\n",
+ " </tbody>\n",
+ "</table>\n",
+ "</div>"
+ ],
+ "text/plain": [
+ " index age_apparent age_real f m roi_index\n",
+ "0 0 11.05 18.63 0.8155 0.1845 0\n",
+ "1 1 28.59 26.64 0.0219 0.9781 1\n",
+ "2 2 12.09 19.08 0.6808 0.3192 2\n",
+ "3 3 39.36 51.36 0.9943 0.0057 3\n",
+ "4 4 41.84 52.25 0.8226 0.1774 4"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Less than 21yr: 311,973 (apparent), 168,619 (real)\n",
+ "Less than 18yr: 175,628 (apparent), 53,602 (real)\n",
+ "Less than 12yr: 35,235 (apparent), 773 (real)\n",
+ "Less than 8yr: 1,488 (apparent), 0 (real)\n"
+ ]
+ }
+ ],
+ "source": [
+ "brackets = [21, 18, 12, 8]\n",
+ "for b in brackets:\n",
+ " age_ap = len(df[df['age_apparent'] < b])\n",
+ " age_real = len(df[df['age_real'] < b])\n",
+ " print(f\"Less than {b}yr: {age_ap:,} (apparent), {age_real:,} (real)\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1559780"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "megapixels",
+ "language": "python",
+ "name": "megapixels"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}