diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2018-11-25 22:19:57 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2018-11-25 22:19:57 +0100 |
| commit | e1fa31bfd6a938341c3a8a63f238d0952cf4b429 (patch) | |
| tree | c61394d69022c026321a28cc0cf12c99208605c1 /megapixels/datasets | |
| parent | ee3d0d98e19f1d8177d85af1866fd0ee431fe9ea (diff) | |
| parent | 0529d4cd1618016319e995c37aa118bf8c2d501b (diff) | |
merge
Diffstat (limited to 'megapixels/datasets')
| -rw-r--r-- | megapixels/datasets/commands/crop.py | 104 | ||||
| -rw-r--r-- | megapixels/datasets/commands/extract.py | 86 | ||||
| -rw-r--r-- | megapixels/datasets/commands/face.py | 117 | ||||
| -rw-r--r-- | megapixels/datasets/commands/resize.py | 81 |
4 files changed, 388 insertions, 0 deletions
diff --git a/megapixels/datasets/commands/crop.py b/megapixels/datasets/commands/crop.py new file mode 100644 index 00000000..778be0c4 --- /dev/null +++ b/megapixels/datasets/commands/crop.py @@ -0,0 +1,104 @@ +""" +Crop images to prepare for training +""" + +import click +from PIL import Image, ImageOps, ImageFilter, ImageDraw + +from app.settings import types +from app.utils import click_utils +from app.settings import app_cfg as cfg + +@click.command() +@click.option('-i', '--input', 'opt_dir_in', required=True, + help='Input directory') +@click.option('-o', '--output', 'opt_dir_out', required=True, + help='Output directory') +@click.option('-e', '--ext', 'opt_ext', + default='jpg', type=click.Choice(['jpg', 'png']), + help='File glob ext') +@click.option('--size', 'opt_size', + type=(int, int), default=(256, 256), + help='Output image size') +@click.option('-t', '--crop-type', 'opt_crop_type', + default='center', type=click.Choice(['center', 'mirror', 'face', 'person', 'none']), + help='Force fit image center location') +@click.pass_context +def cli(ctx, opt_dir_in, opt_dir_out, opt_ext, opt_size, opt_crop_type): + """Crop, mirror images""" + + import os + from os.path import join + from pathlib import Path + from glob import glob + from tqdm import tqdm + + + from app.utils import logger_utils, file_utils, im_utils + + # ------------------------------------------------- + # process here + + log = logger_utils.Logger.getLogger() + log.info('crop images') + + # get list of files to process + fp_ims = glob(join(opt_dir_in, '*.{}'.format(opt_ext))) + log.debug('files: {}'.format(len(fp_ims))) + + # ensure output dir exists + file_utils.mkdirs(opt_dir_out) + + for fp_im in tqdm(fp_ims): + im = process_crop(fp_im, opt_size, opt_crop_type) + fp_out = join(opt_dir_out, Path(fp_im).name) + im.save(fp_out) + + +def process_crop(fp_im, opt_size, crop_type): + im = Image.open(fp_im) + if crop_type == 'center': + im = crop_square_fit(im, opt_size) + elif crop_type == 'mirror': + im = mirror_crop_square(im, opt_size) + return im + +def crop_square_fit(im, size, center=(0.5, 0.5)): + return ImageOps.fit(im, size, method=Image.BICUBIC, centering=center) + +def mirror_crop_square(im, size): + # force to even dims + if im.size[0] % 2 or im.size[1] % 2: + im = ImageOps.fit(im, ((im.size[0] // 2) * 2, (im.size[1] // 2) * 2)) + + # create new square image + min_size, max_size = (min(im.size), max(im.size)) + orig_w, orig_h = im.size + margin = (max_size - min_size) // 2 + w, h = (max_size, max_size) + im_new = Image.new('RGB', (w, h), color=(0, 0, 0)) + + #crop (l, t, r, b) + if orig_w > orig_h: + # landscape, mirror expand T/B + im_top = ImageOps.mirror(im.crop((0, 0, margin, w))) + im_bot = ImageOps.mirror(im.crop((orig_h - margin, 0, orig_h, w))) + im_new.paste(im_top, (0, 0)) + im_new.paste(im, (margin, 0, orig_h + margin, w)) + im_new.paste(im_bot, (h - margin, 0)) + elif orig_h > orig_w: + # portrait, mirror expand L/R + im_left = ImageOps.mirror(im.crop((0, 0, margin, h))) + im_right = ImageOps.mirror(im.crop((orig_w - margin, 0, orig_w, h))) + im_new.paste(im_left, (0, 0)) + im_new.paste(im, (margin, 0, orig_w + margin, h)) + im_new.paste(im_right, (w - margin, 0)) + + return im_new.resize(size) + + +def center_crop_face(): + pass + +def center_crop_person(): + pass
\ No newline at end of file diff --git a/megapixels/datasets/commands/extract.py b/megapixels/datasets/commands/extract.py new file mode 100644 index 00000000..4e77a978 --- /dev/null +++ b/megapixels/datasets/commands/extract.py @@ -0,0 +1,86 @@ +""" +Crop images to prepare for training +""" + +import click + +from app.settings import types +from app.utils import click_utils +from app.settings import app_cfg as cfg + +@click.command() +@click.option('-i', '--input', 'opt_fp_in', required=True, + help='Input CSV') +@click.option('--media', 'opt_dir_media', required=True, + help='Input image/video directory') +@click.option('-o', '--output', 'opt_dir_out', required=True, + help='Output directory for extracted ROI images') +@click.option('--size', 'opt_size', + type=(int, int), default=(300, 300), + help='Output image size') +@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), + help='Slice list of files') +@click.option('--padding', 'opt_padding', default=0, + help='Facial padding') +@click.option('--ext', 'opt_ext_out', default='jpg', type=click.Choice(['jpg', 'png']), + help='Output image type') +@click.pass_context +def cli(ctx, opt_fp_in, opt_dir_media, opt_dir_out, opt_size, opt_slice, + opt_padding, opt_ext_out): + """Extrace ROIs to images""" + + import os + from os.path import join + from pathlib import Path + from glob import glob + + from tqdm import tqdm + import numpy as np + from PIL import Image, ImageOps, ImageFilter, ImageDraw + import cv2 as cv + import pandas as pd + + from app.utils import logger_utils, file_utils, im_utils + from app.models.bbox import BBox + # ------------------------------------------------- + # process here + log = logger_utils.Logger.getLogger() + + df_rois = pd.read_csv(opt_fp_in) + if opt_slice: + df_rois = df_rois[opt_slice[0]:opt_slice[1]] + + log.info('Processing {:,} rows'.format(len(df_rois))) + + file_utils.mkdirs(opt_dir_out) + + df_rois_grouped = df_rois.groupby(['fn']) # group by fn/filename + groups = df_rois_grouped.groups + + for group in groups: + + # get image + group_rows = df_rois_grouped.get_group(group) + + row = group_rows.iloc[0] + fp_im = join(opt_dir_media, '{fn}{ext}'.format(**row)) #TODO change to ext + im = Image.open(fp_im) + + + for idx, roi in group_rows.iterrows(): + log.info('{}'.format(roi['fn'])) + # get bbox to im dimensions + xywh = [roi['x'], roi['y'], roi['w'] , roi['h']] + bbox = BBox.from_xywh(*xywh) + dim = im.size + bbox_dim = bbox.to_dim(dim) + # expand + bbox_dim_exp = bbox_dim.expand_dim(opt_padding, dim) + # crop + x1y2 = bbox_dim_exp.pt_tl + bbox_dim_exp.pt_br + im_crop = im.crop(box=x1y2) + # save + idx_zpad = file_utils.zpad(idx, zeros=3) + fp_im_out = join(opt_dir_out, '{}_{}.{}'.format(roi['fn'], idx_zpad, opt_ext_out)) + im_crop.save(fp_im_out) + diff --git a/megapixels/datasets/commands/face.py b/megapixels/datasets/commands/face.py new file mode 100644 index 00000000..6b7b18b7 --- /dev/null +++ b/megapixels/datasets/commands/face.py @@ -0,0 +1,117 @@ +""" +Crop images to prepare for training +""" + +import click +# from PIL import Image, ImageOps, ImageFilter, ImageDraw + +from app.settings import types +from app.utils import click_utils +from app.settings import app_cfg as cfg + +@click.command() +@click.option('-i', '--input', 'opt_dir_in', required=True, + help='Input directory') +@click.option('-o', '--output', 'opt_fp_out', required=True, + help='Output CSV') +@click.option('-e', '--ext', 'opt_ext', + default='jpg', type=click.Choice(['jpg', 'png']), + help='File glob ext') +@click.option('--size', 'opt_size', + type=(int, int), default=(300, 300), + help='Output image size') +@click.option('-t', '--detector-type', 'opt_detector_type', + type=cfg.FaceDetectNetVar, + default=click_utils.get_default(types.FaceDetectNet.DLIB_CNN), + help=click_utils.show_help(types.FaceDetectNet)) +@click.option('-g', '--gpu', 'opt_gpu', default=0, + help='GPU index') +@click.option('--conf', 'opt_conf_thresh', default=0.85, type=click.FloatRange(0,1), + help='Confidence minimum threshold') +@click.option('--pyramids', 'opt_pyramids', default=0, type=click.IntRange(0,4), + help='Number pyramids to upscale for DLIB detectors') +@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), + help='Slice list of files') +@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False, + help='Display detections to debug') +@click.pass_context +def cli(ctx, opt_dir_in, opt_fp_out, opt_ext, opt_size, opt_detector_type, + opt_gpu, opt_conf_thresh, opt_pyramids, opt_slice, opt_display): + """Extrace face""" + + import sys + import os + from os.path import join + from pathlib import Path + from glob import glob + from tqdm import tqdm + import numpy as np + import dlib # must keep a local reference for dlib + import cv2 as cv + import pandas as pd + + from app.utils import logger_utils, file_utils, im_utils + from app.processors import face_detector + + # ------------------------------------------------- + # init here + + log = logger_utils.Logger.getLogger() + + if opt_detector_type == types.FaceDetectNet.CVDNN: + detector = face_detector.DetectorCVDNN() + elif opt_detector_type == types.FaceDetectNet.DLIB_CNN: + detector = face_detector.DetectorDLIBCNN(opt_gpu) + elif opt_detector_type == types.FaceDetectNet.DLIB_HOG: + detector = face_detector.DetectorDLIBHOG() + elif opt_detector_type == types.FaceDetectNet.HAAR: + log.error('{} not yet implemented'.format(opt_detector_type.name)) + return + + + # ------------------------------------------------- + # process here + + # get list of files to process + fp_ims = glob(join(opt_dir_in, '*.{}'.format(opt_ext))) + if opt_slice: + fp_ims = fp_ims[opt_slice[0]:opt_slice[1]] + log.debug('processing {:,} files'.format(len(fp_ims))) + + + data = [] + + for fp_im in tqdm(fp_ims): + im = cv.imread(fp_im) + bboxes = detector.detect(im, opt_size=opt_size, opt_pyramids=opt_pyramids) + fpp_im = Path(fp_im) + for bbox in bboxes: + roi = { + 'fn': fpp_im.stem, + 'ext': fpp_im.suffix, + 'x': bbox.x, + 'y': bbox.y, + 'w': bbox.w, + 'h': bbox.h} + dim = bbox.to_dim(im.shape[:2][::-1]) # w,h + data.append(roi) + + # debug display + if opt_display and len(bboxes): + im_md = im_utils.resize(im, width=opt_size[0]) + for bbox in bboxes: + dim = bbox.to_dim(im_md.shape[:2][::-1]) + cv.rectangle(im_md, dim.pt_tl, dim.pt_br, (0,255,0), 3) + cv.imshow('', im_md) + while True: + k = cv.waitKey(1) & 0xFF + if k == 27 or k == ord('q'): # ESC + cv.destroyAllWindows() + sys.exit() + elif k != 255: + # any key to continue + break + + # save date + df = pd.DataFrame.from_dict(data) + df.to_csv(opt_fp_out)
\ No newline at end of file diff --git a/megapixels/datasets/commands/resize.py b/megapixels/datasets/commands/resize.py new file mode 100644 index 00000000..5e2d31aa --- /dev/null +++ b/megapixels/datasets/commands/resize.py @@ -0,0 +1,81 @@ +""" +Crop images to prepare for training +""" + +import click + +from app.settings import types +from app.utils import click_utils +from app.settings import app_cfg as cfg + +""" +Filter Q-Down Q-Up Speed +NEAREST ⭐⭐⭐⭐⭐ +BOX ⭐ ⭐⭐⭐⭐ +BILINEAR ⭐ ⭐ ⭐⭐⭐ +HAMMING ⭐⭐ ⭐⭐⭐ +BICUBIC ⭐⭐⭐ ⭐⭐⭐ ⭐⭐ +LANCZOS ⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐ +""" + +@click.command() +@click.option('-i', '--input', 'opt_dir_in', required=True, + help='Input directory') +@click.option('-o', '--output', 'opt_dir_out', required=True, + help='Output directory') +@click.option('-e', '--ext', 'opt_glob_ext', + default='jpg', type=click.Choice(['jpg', 'png']), + help='File glob ext') +@click.option('--size', 'opt_size', + type=(int, int), default=(256, 256), + help='Output image size (square)') +@click.option('--method', 'opt_scale_method', + type=click.Choice(['LANCZOS', 'BICUBIC', 'HAMMING', 'BILINEAR', 'BOX', 'NEAREST']), + default='LANCZOS', + help='Scaling method to use') +@click.pass_context +def cli(ctx, opt_dir_in, opt_dir_out, opt_glob_ext, opt_size, opt_scale_method): + """Crop, mirror images""" + + import os + from os.path import join + from pathlib import Path + from glob import glob + from tqdm import tqdm + from PIL import Image, ImageOps, ImageFilter + from app.utils import logger_utils, file_utils, im_utils + + # ------------------------------------------------- + # init + + log = logger_utils.Logger.getLogger() + + methods = { + 'LANCZOS': Image.LANCZOS, + 'BICUBIC': Image.BICUBIC, + 'HAMMING': Image.HAMMING, + 'BILINEAR': Image.BILINEAR, + 'BOX': Image.BOX, + 'NEAREST': Image.NEAREST + } + + # ------------------------------------------------- + # process here + + # get list of files to process + fp_ims = glob(join(opt_dir_in, '*.{}'.format(opt_glob_ext))) + log.info('processing {:,} files'.format(len(fp_ims))) + + # set scale method + scale_method = methods[opt_scale_method] + + # ensure output dir exists + file_utils.mkdirs(opt_dir_out) + + # resize and save images + for fp_im in tqdm(fp_ims): + im = Image.open(fp_im) + im = ImageOps.fit(im, opt_size, method=scale_method, centering=(0.5, 0.5)) + fp_out = join(opt_dir_out, Path(fp_im).name) + im.save(fp_out) + |
