summaryrefslogtreecommitdiff
path: root/megapixels/datasets/commands/face.py
diff options
context:
space:
mode:
authoradamhrv <adam@ahprojects.com>2018-12-05 12:00:15 +0100
committeradamhrv <adam@ahprojects.com>2018-12-05 12:00:15 +0100
commit90abf459d1df1f21960c1d653a1f936d1ec30256 (patch)
treefacab8e9bac6c56e69c369c2140cdbea218a01df /megapixels/datasets/commands/face.py
parent0529d4cd1618016319e995c37aa118bf8c2d501b (diff)
.
Diffstat (limited to 'megapixels/datasets/commands/face.py')
-rw-r--r--megapixels/datasets/commands/face.py117
1 files changed, 0 insertions, 117 deletions
diff --git a/megapixels/datasets/commands/face.py b/megapixels/datasets/commands/face.py
deleted file mode 100644
index 6b7b18b7..00000000
--- a/megapixels/datasets/commands/face.py
+++ /dev/null
@@ -1,117 +0,0 @@
-"""
-Crop images to prepare for training
-"""
-
-import click
-# from PIL import Image, ImageOps, ImageFilter, ImageDraw
-
-from app.settings import types
-from app.utils import click_utils
-from app.settings import app_cfg as cfg
-
-@click.command()
-@click.option('-i', '--input', 'opt_dir_in', required=True,
- help='Input directory')
-@click.option('-o', '--output', 'opt_fp_out', required=True,
- help='Output CSV')
-@click.option('-e', '--ext', 'opt_ext',
- default='jpg', type=click.Choice(['jpg', 'png']),
- help='File glob ext')
-@click.option('--size', 'opt_size',
- type=(int, int), default=(300, 300),
- help='Output image size')
-@click.option('-t', '--detector-type', 'opt_detector_type',
- type=cfg.FaceDetectNetVar,
- default=click_utils.get_default(types.FaceDetectNet.DLIB_CNN),
- help=click_utils.show_help(types.FaceDetectNet))
-@click.option('-g', '--gpu', 'opt_gpu', default=0,
- help='GPU index')
-@click.option('--conf', 'opt_conf_thresh', default=0.85, type=click.FloatRange(0,1),
- help='Confidence minimum threshold')
-@click.option('--pyramids', 'opt_pyramids', default=0, type=click.IntRange(0,4),
- help='Number pyramids to upscale for DLIB detectors')
-@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
- help='Slice list of files')
-@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
- help='Display detections to debug')
-@click.pass_context
-def cli(ctx, opt_dir_in, opt_fp_out, opt_ext, opt_size, opt_detector_type,
- opt_gpu, opt_conf_thresh, opt_pyramids, opt_slice, opt_display):
- """Extrace face"""
-
- import sys
- import os
- from os.path import join
- from pathlib import Path
- from glob import glob
- from tqdm import tqdm
- import numpy as np
- import dlib # must keep a local reference for dlib
- import cv2 as cv
- import pandas as pd
-
- from app.utils import logger_utils, file_utils, im_utils
- from app.processors import face_detector
-
- # -------------------------------------------------
- # init here
-
- log = logger_utils.Logger.getLogger()
-
- if opt_detector_type == types.FaceDetectNet.CVDNN:
- detector = face_detector.DetectorCVDNN()
- elif opt_detector_type == types.FaceDetectNet.DLIB_CNN:
- detector = face_detector.DetectorDLIBCNN(opt_gpu)
- elif opt_detector_type == types.FaceDetectNet.DLIB_HOG:
- detector = face_detector.DetectorDLIBHOG()
- elif opt_detector_type == types.FaceDetectNet.HAAR:
- log.error('{} not yet implemented'.format(opt_detector_type.name))
- return
-
-
- # -------------------------------------------------
- # process here
-
- # get list of files to process
- fp_ims = glob(join(opt_dir_in, '*.{}'.format(opt_ext)))
- if opt_slice:
- fp_ims = fp_ims[opt_slice[0]:opt_slice[1]]
- log.debug('processing {:,} files'.format(len(fp_ims)))
-
-
- data = []
-
- for fp_im in tqdm(fp_ims):
- im = cv.imread(fp_im)
- bboxes = detector.detect(im, opt_size=opt_size, opt_pyramids=opt_pyramids)
- fpp_im = Path(fp_im)
- for bbox in bboxes:
- roi = {
- 'fn': fpp_im.stem,
- 'ext': fpp_im.suffix,
- 'x': bbox.x,
- 'y': bbox.y,
- 'w': bbox.w,
- 'h': bbox.h}
- dim = bbox.to_dim(im.shape[:2][::-1]) # w,h
- data.append(roi)
-
- # debug display
- if opt_display and len(bboxes):
- im_md = im_utils.resize(im, width=opt_size[0])
- for bbox in bboxes:
- dim = bbox.to_dim(im_md.shape[:2][::-1])
- cv.rectangle(im_md, dim.pt_tl, dim.pt_br, (0,255,0), 3)
- cv.imshow('', im_md)
- while True:
- k = cv.waitKey(1) & 0xFF
- if k == 27 or k == ord('q'): # ESC
- cv.destroyAllWindows()
- sys.exit()
- elif k != 255:
- # any key to continue
- break
-
- # save date
- df = pd.DataFrame.from_dict(data)
- df.to_csv(opt_fp_out) \ No newline at end of file