summaryrefslogtreecommitdiff
path: root/megapixels/commands
diff options
context:
space:
mode:
authoradamhrv <adam@ahprojects.com>2019-01-15 00:18:28 +0100
committeradamhrv <adam@ahprojects.com>2019-01-15 00:18:28 +0100
commitec6430b621ff6137ac7150234cb950aac56ff53f (patch)
tree4e6d1703eee7c9ca6bd3808ff31a969eee7102d1 /megapixels/commands
parent7c42c8f62b58d6d6c4e1c6332ccc89c7cbc26a29 (diff)
add vgg
Diffstat (limited to 'megapixels/commands')
-rw-r--r--megapixels/commands/cv/face_vector.py36
1 files changed, 24 insertions, 12 deletions
diff --git a/megapixels/commands/cv/face_vector.py b/megapixels/commands/cv/face_vector.py
index 4df647f5..9e9f6396 100644
--- a/megapixels/commands/cv/face_vector.py
+++ b/megapixels/commands/cv/face_vector.py
@@ -1,5 +1,8 @@
"""
Converts ROIs to face vector
+NB: the VGG Face2 extractor should be used with MTCNN ROIs (not square)
+ the DLIB face extractor should be used with DLIB ROIs (square)
+see https://github.com/ox-vgg/vgg_face2 for TAR@FAR
"""
import click
@@ -26,10 +29,14 @@ from app.settings import app_cfg as cfg
@click.option('--size', 'opt_size',
type=(int, int), default=(300, 300),
help='Output image size')
+@click.option('-e', '--extractor', 'opt_extractor',
+ default=types.FaceExtractor.VGG,
+ type=cfg.FaceExtractorVar,
+ help='Type of extractor framework/network to use')
@click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS,
- help='Number of jitters')
-@click.option('-p', '--padding', 'opt_padding', default=cfg.DLIB_FACEREC_PADDING,
- help='Percentage padding')
+ help='Number of jitters (only for dlib')
+@click.option('-p', '--padding', 'opt_padding', default=cfg.FACEREC_PADDING,
+ help='Percentage ROI padding')
@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
help='Slice list of files')
@click.option('-f', '--force', 'opt_force', is_flag=True,
@@ -38,7 +45,7 @@ from app.settings import app_cfg as cfg
help='GPU index')
@click.pass_context
def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
- opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding):
+ opt_extractor, opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding):
"""Converts face ROIs to vectors"""
import sys
@@ -56,7 +63,7 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
from app.models.bbox import BBox
from app.models.data_store import DataStore
from app.utils import logger_utils, file_utils, im_utils
- from app.processors import face_recognition
+ from app.processors import face_extractor
# -------------------------------------------------
@@ -73,7 +80,11 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
return
# init face processors
- facerec = face_recognition.RecognitionDLIB()
+ if opt_extractor == types.FaceExtractor.DLIB:
+ log.debug('set dlib')
+ extractor = face_extractor.ExtractorDLIB(gpu=opt_gpu, jitters=opt_jitters)
+ elif opt_extractor == types.FaceExtractor.VGG:
+ extractor = face_extractor.ExtractorVGG()
# load data
fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
@@ -85,7 +96,8 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
df_roi = df_roi[opt_slice[0]:opt_slice[1]]
# -------------------------------------------------
- # process here
+ # process images
+
df_img_groups = df_roi.groupby('record_index')
log.debug('processing {:,} groups'.format(len(df_img_groups)))
@@ -99,17 +111,17 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
# get bbox
x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h
dim = (ds_record.width, ds_record.height)
- #dim = im.shape[:2][::-1]
# get face vector
- bbox_dim = BBox.from_xywh(x, y, w, h).to_dim(dim) # convert to int real dimensions
+ bbox = BBox.from_xywh(x, y, w, h) # norm
# compute vec
- # padding=opt_padding not yet implemented in dlib===19.16 but merged in master
- vec = facerec.vec(im, bbox_dim, jitters=opt_jitters)
- vec_flat = facerec.flatten(vec)
+ vec = extractor.extract(im, bbox) # use normalized BBox
+ vec_flat = extractor.flatten(vec)
vec_flat['roi_index'] = roi_index
vec_flat['record_index'] = record_index
vecs.append(vec_flat)
+ # -------------------------------------------------
+ # save data
# create DataFrame and save to CSV
df = pd.DataFrame.from_dict(vecs)