diff options
| author | Adam Harvey <adam@ahprojects.com> | 2019-01-07 18:49:09 +0100 |
|---|---|---|
| committer | Adam Harvey <adam@ahprojects.com> | 2019-01-07 18:49:09 +0100 |
| commit | c67a3c23190287f747989e5dc7725e1657edf8f1 (patch) | |
| tree | 5ff47ab72e6fb146f66730db06fc3b91265dd769 /megapixels/commands/demo/face_beauty.py | |
| parent | 55b9734d131a197166156566d1b999a8bb59169b (diff) | |
add age, gender, emotion stubs
Diffstat (limited to 'megapixels/commands/demo/face_beauty.py')
| -rw-r--r-- | megapixels/commands/demo/face_beauty.py | 28 |
1 files changed, 11 insertions, 17 deletions
diff --git a/megapixels/commands/demo/face_beauty.py b/megapixels/commands/demo/face_beauty.py index b1612f7c..d31c5cee 100644 --- a/megapixels/commands/demo/face_beauty.py +++ b/megapixels/commands/demo/face_beauty.py @@ -1,6 +1,3 @@ -""" -""" - import click from app.settings import types @@ -51,25 +48,23 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_size, opt_force, opt_display): # load image im = cv.imread(opt_fp_in) - # im = cv.cvtColor(im, cv.COLOR_BGR2RGB) - if im.shape[0] > 1280: - new_shape = (1280, im.shape[1] * 1280 / im.shape[0]) - elif im.shape[1] > 1280: - new_shape = (im.shape[0] * 1280 / im.shape[1], 1280) - elif im.shape[0] < 640 or im.shape[1] < 640: - new_shape = (im.shape[0] * 2, im.shape[1] * 2) - else: - new_shape = im.shape[0:2] + im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) - im_resized = cv.resize(im, (int(new_shape[1]), int(new_shape[0]))) - #im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) + # TODO fix Keras CPU/GPU device selection issue + # NB: GPU visibility issues with dlib/keras + # Wrap this with cuda toggle and run before init dlib GPU + + device_cur = os.getenv('CUDA_VISIBLE_DEVICES', '') + os.environ['CUDA_VISIBLE_DEVICES'] = '' + beauty_predictor = face_beauty.FaceBeauty() + os.environ['CUDA_VISIBLE_DEVICES'] = device_cur # ---------------------------------------------------------------------------- # detect face - face_detector = face_detector.DetectorDLIBCNN() # -1 for CPU + face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU bboxes = face_detector.detect(im_resized, largest=True) bbox = bboxes[0] dim = im_resized.shape[:2][::-1] @@ -82,8 +77,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_size, opt_force, opt_display): # ---------------------------------------------------------------------------- # beauty - - beauty_predictor = face_beauty.FaceBeauty() + beauty_score = beauty_predictor.beauty(im_resized, bbox_dim) |
