summaryrefslogtreecommitdiff
path: root/megapixels/commands/demo/face_3ddfa.py
diff options
context:
space:
mode:
authoradamhrv <adam@ahprojects.com>2019-01-09 02:37:30 +0100
committeradamhrv <adam@ahprojects.com>2019-01-09 02:37:30 +0100
commit62decc28cdfeaa7d62e2fce3f47c82c982008180 (patch)
tree443bcdcce55e429336b7980cef1f919f4171bc61 /megapixels/commands/demo/face_3ddfa.py
parent6586ae9e67d39f11bbd66356730aa126d3bf1269 (diff)
add 3d render
Diffstat (limited to 'megapixels/commands/demo/face_3ddfa.py')
-rw-r--r--megapixels/commands/demo/face_3ddfa.py314
1 files changed, 314 insertions, 0 deletions
diff --git a/megapixels/commands/demo/face_3ddfa.py b/megapixels/commands/demo/face_3ddfa.py
new file mode 100644
index 00000000..6182aeb6
--- /dev/null
+++ b/megapixels/commands/demo/face_3ddfa.py
@@ -0,0 +1,314 @@
+'''
+Combines 3D face mode + rendering
+https://github.com/cleardusk/3DDFA
+https://github.com/YadiraF/face3d
+'''
+import click
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
+ help='Image filepath')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='GIF output path')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('--bbox-init', 'opt_bbox_init', is_flag=True,
+ help='Use landmarks for ROI instead of BBox')
+@click.option('--size', 'opt_render_dim',
+ type=(int, int), default=(512, 512),
+ help='2.5D render image size')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_bbox_init,
+ opt_size, opt_render_dim, opt_force, opt_display):
+ """3D face demo"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ from tqdm import tqdm
+ import numpy as np
+ import pandas as pd
+ import cv2 as cv
+ import dlib
+
+ from app.models.bbox import BBox
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+ import torch
+ import torchvision.transforms as transforms
+ import torch.backends.cudnn as cudnn
+ import scipy.io as sio
+
+ sys.path.append(join(Path.cwd().parent, '3rdparty'))
+ # change name of 3DDFA to d3DDFA because can't start with number
+ from d3DDFA import mobilenet_v1
+ from d3DDFA.utils.ddfa import ToTensorGjz, NormalizeGjz, str2bool
+ from d3DDFA.utils import inference as d3dfa_utils
+ from d3DDFA.utils.inference import parse_roi_box_from_landmark, crop_img, predict_68pts
+ from d3DDFA.utils.inference import dump_to_ply, dump_vertex, draw_landmarks
+ from d3DDFA.utils.inference import predict_dense, parse_roi_box_from_bbox, get_colors
+ from d3DDFA.utils.inference import write_obj_with_colors
+ from d3DDFA.utils.estimate_pose import parse_pose
+ from d3DDFA.utils.render import get_depths_image, cget_depths_image, cpncc
+ from d3DDFA.utils import paf as d3dfa_paf_utils
+
+ # https://github.com/YadiraF/face3d
+ # compile cython module in face3d/mesh/cython/ python setup.py build_ext -i
+ from face3d.face3d import mesh as face3d_mesh
+
+
+ log = logger_utils.Logger.getLogger()
+
+ # -------------------------------------------------
+ # load image
+
+ fpp_in = Path(opt_fp_in)
+ im = cv.imread(opt_fp_in)
+ #im = im_utils.resize(im_orig, width=opt_size[0], height=opt_size[1])
+ # im = im_orig.copy()
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ bboxes = face_detector.detect(im, largest=True)
+ bbox = bboxes[0]
+ dim = im.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+ else:
+ log.info(f'face detected: {bbox_dim.to_xyxy()}')
+
+
+ # -------------------------------------------------------------------------
+ # landmarks
+
+ landmark_predictor = face_landmarks.Dlib2D_68()
+ lanmarks = landmark_predictor.landmarks(im, bbox_dim)
+
+
+ # -------------------------------------------------------------------------
+ # 3ddfa
+
+ STD_SIZE = 120
+
+ # load pre-tained model
+ fp_ckpt = join(cfg.DIR_MODELS_PYTORCH, '3ddfa', 'phase1_wpdc_vdc_v2.pth.tar')
+ arch = 'mobilenet_1'
+ checkpoint = torch.load(fp_ckpt, map_location=lambda storage, loc: storage)['state_dict']
+ model = getattr(mobilenet_v1, arch)(num_classes=62) # 62 = 12(pose) + 40(shape) +10(expression)
+ model_dict = model.state_dict()
+
+ # because the model is trained by multiple gpus, prefix module should be removed
+ for k in checkpoint.keys():
+ model_dict[k.replace('module.', '')] = checkpoint[k]
+ model.load_state_dict(model_dict, strict=False)
+ if opt_gpu > -1:
+ cudnn.benchmark = True
+ model = model.cuda()
+ model.eval()
+
+ # forward
+ st = time.time()
+ fp_tri = join(cfg.DIR_MODELS_PYTORCH, '3ddfa', 'tri.mat')
+ triangles = sio.loadmat(fp_tri)['tri']
+ transform = transforms.Compose([ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
+
+ pts_res = []
+ Ps = [] # Camera matrix collection
+ poses = [] # pose collection, [todo: validate it]
+ vertices_lst = [] # store multiple face vertices
+
+ # use landmark as roi
+ pts = np.array(lanmarks).T
+ # roi_box = d3dfa_utils.parse_roi_box_from_landmark(pts)
+ roi_box = parse_roi_box_from_bbox(bbox_dim.to_xyxy())
+ im_crop = d3dfa_utils.crop_img(im, roi_box)
+ im_crop = cv.resize(im_crop, dsize=(STD_SIZE, STD_SIZE), interpolation=cv.INTER_LINEAR)
+
+ # forward
+ torch_input = transform(im_crop).unsqueeze(0)
+ with torch.no_grad():
+ if opt_gpu > -1:
+ torch_input = torch_input.cuda()
+ param = model(torch_input)
+ param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
+
+ # 68 pts
+ pts68 = d3dfa_utils.predict_68pts(param, roi_box)
+
+ pts_res.append(pts68)
+ P, pose = parse_pose(param)
+ Ps.append(P)
+ poses.append(pose)
+
+ # dense face 3d vertices
+ vertices = d3dfa_utils.predict_dense(param, roi_box)
+ vertices_lst.append(vertices)
+
+ log.info(f'generated 3d data in: {(time.time() - st):.2f}s')
+
+ # filepath helper function
+ def to_fp(fpp, ext, suffix=None):
+ if suffix:
+ fp = join(fpp.parent, f'{fpp.stem}_{suffix}.{ext}')
+ else:
+ fp = join(fpp.parent, f'{fpp.stem}.{ext}')
+ return fp
+
+ # save .mat
+ colors = d3dfa_utils.get_colors(im, vertices)
+ vertices_orig = vertices.copy()
+ fp_mat_3df = to_fp(fpp_in, 'mat', suffix='face3d')
+ sio.savemat(fp_mat_3df, {'vertices': vertices, 'colors': colors, 'triangles': triangles})
+
+ # save PAF
+ #fp_paf = to_fp(fpp_in, 'jpg', suffix='paf')
+ #opt_paf_size = 3 # PAF feature kernel size
+ #im_paf = d3dfa_paf_utils.gen_img_paf(img_crop=im_crop, param=param, kernel_size=opt_paf_size)
+ #cv.imwrite(fp_paf, im_paf)
+
+ # save pose image
+ # P, pose = parse_pose(param) # Camera matrix (without scale), and pose (yaw, pitch, roll, to verify)
+
+ img_pose = draw_utils.plot_pose_box(im, Ps, pts_res)
+ fp_pose = to_fp(fpp_in, 'jpg', suffix='pose')
+ cv.imwrite(fp_pose, img_pose)
+
+ # save depth image
+ fp_depth = to_fp(fpp_in, 'png', suffix='depth')
+ # depths_img = get_depths_image(im, vertices_lst, tri-1) # python version
+ im_depth = cget_depths_image(im, vertices_lst, triangles - 1) # cython version
+ cv.imwrite(fp_depth, im_depth)
+
+ # save pncc image
+ fp_pose = to_fp(fpp_in, 'png', suffix='pncc')
+ pncc_feature = cpncc(im, vertices_lst, triangles - 1) # cython version
+ cv.imwrite(fp_pose, pncc_feature[:, :, ::-1]) # cv.imwrite will swap RGB -> BGR
+
+ # save .ply
+ #fp_ply = to_fp(fpp_in, 'ply')
+ #dump_to_ply(vertices, triangles, fp_ply)
+
+ # skip: save .mat (3ddfa default not compatible with face3d utils)
+ #fp_mat = to_fp(fpp_in, 'mat')
+ #d3dfa_utils.dump_vertex(vertices, fp_mat)
+
+ # save 68 points
+ #fp_txt = to_fp(fpp_in, 'txt', suffix='68')
+ #np.savetxt(to_fp(fpp_in, 'txt'), pts68, fmt='%.3f')
+
+ # save roi
+ #fp_txt = to_fp(fpp_in, 'txt', suffix='roi')
+ #np.savetxt(fp_txt, roi_box, fmt='%.3f')a
+
+ # save crop
+ #fp_crop = to_fp(fpp_in, 'jpg', suffix='crop')
+ #cv.imwrite(fp_crop, im_crop)
+
+ # save obj
+ colors = d3dfa_utils.get_colors(im, vertices_orig)
+ fp_obj = to_fp(fpp_in, 'obj')
+ write_obj_with_colors(fp_obj, vertices_orig, triangles, colors)
+
+ #fp_landmarks = to_fp(fpp_in, 'jpg', suffix='3DDFA')
+ # show_flg?
+ #d3dfa_utils.draw_landmarks(im, pts_res, wfp=fp_landmarks, show_flg=False)
+
+ # -------------------------------------------------------------------------
+ # face3d
+
+ # create 3D mesh photo face
+ # if loading file
+ # TODO find where vertices is being changed
+ vertices = vertices_orig # vertices changes somewhere, so keep copy
+
+ # preprocess 3D data from 3DDFA for face3d rendering
+ vertices = vertices.transpose()
+ triangles = triangles.transpose()
+ vertices = vertices.astype(np.float64) # change data type
+ # subtract 1 from triangle vertex indices (depends on your .mat file)
+ triangles = np.array([np.array([t[0]-1, t[1]-1, t[2]-1]).astype(np.int32) for t in triangles])
+ vertices -= np.array([abs(np.min(vertices[:,0])), np.min(abs(vertices[:,1])), np.min(abs(vertices[:,2]))])
+ vertices -= np.array([np.mean(vertices[:,0]), np.mean(vertices[:,1]), np.mean(vertices[:,2])])
+ # colors = np.array([c[::-1] for c in colors]) # BGR --> RGB
+ colors = colors/np.max(colors) # normalize color range
+
+ # set max render size (about 75% of canvas size)
+ max_render_size = int(max(opt_render_dim) * .75)
+ s = max_render_size/(np.max(vertices[:,1]) - np.min(vertices[:,1]))
+
+ # rotation matrix
+ R = face3d_mesh.transform.angle2matrix([-180, -20, 0])
+
+ # no translation. center of obj:[0,0]
+ t = [0, 0, 0]
+ vertices_trans = face3d_mesh.transform.similarity_transform(vertices, s, R, t)
+
+ # lighting: add point lights, positions are defined in world space
+ light_pos = np.array([[-128, -128, 512]])
+ light_clr_amt = np.array([[1, 1, 1]])
+ colors_lit = face3d_mesh.light.add_light(vertices_trans, triangles, colors, light_pos, light_clr_amt)
+
+ # transform from world space to camera space (what the world is in the eye of observer)
+ vertices_cam = face3d_mesh.transform.lookat_camera(vertices_trans, eye = [0, 0, 0], at = np.array([0, 0, 1]), up = None)
+ # project from 3d world space into 2d image plane. orthographic or perspective projection
+ vertices_proj = face3d_mesh.transform.orthographic_project(vertices_cam)
+
+ # -------------------------------------------------------------------------
+ # render 2D image
+
+ w = h = max(opt_render_dim)
+ vertices_im = face3d_mesh.transform.to_image(vertices_proj, h, w)
+ rendering = face3d_mesh.render.render_colors(vertices_im, triangles, colors_lit, h, w)
+
+ cv.imshow('', rendering)
+ display_utils.handle_keyboard()
+
+ # ----------------------------------------------------------------------------
+ # save
+
+ if opt_fp_out:
+ # save pose only
+ fpp_out = Path(opt_fp_out)
+
+ fp_out = join(fpp_out.parent, f'{fpp_out.stem}_real{fpp_out.suffix}')
+ cv.imwrite(fp_out, im_age_real)
+
+ fp_out = join(fpp_out.parent, f'{fpp_out.stem}_apparent{fpp_out.suffix}')
+ cv.imwrite(fp_out, im_age_apparent)
+
+ fp_out = join(fpp_out.parent, f'{fpp_out.stem}_gender{fpp_out.suffix}')
+ cv.imwrite(fp_out, im_age_apparent)
+
+
+ # ----------------------------------------------------------------------------
+ # display
+
+ if opt_display:
+ # show all images here
+ cv.imshow('real', im_age_real)
+ cv.imshow('apparent', im_age_apparent)
+ cv.imshow('gender', im_gender)
+ display_utils.handle_keyboard()
+