summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv/files_to_rois.py
diff options
context:
space:
mode:
authoradamhrv <adam@ahprojects.com>2018-12-16 19:37:58 +0100
committeradamhrv <adam@ahprojects.com>2018-12-16 19:37:58 +0100
commitc3839ea797401d740db64691c0b4922c935b131c (patch)
treeef64b6b441dd677a41f79a423af8b7a44e68b23f /megapixels/commands/cv/files_to_rois.py
parent10f467b64e3be528ac246d5cf664d675aca3e7f3 (diff)
still sorting CSV vectors indexes
Diffstat (limited to 'megapixels/commands/cv/files_to_rois.py')
-rw-r--r--megapixels/commands/cv/files_to_rois.py156
1 files changed, 0 insertions, 156 deletions
diff --git a/megapixels/commands/cv/files_to_rois.py b/megapixels/commands/cv/files_to_rois.py
deleted file mode 100644
index 1aaf991c..00000000
--- a/megapixels/commands/cv/files_to_rois.py
+++ /dev/null
@@ -1,156 +0,0 @@
-"""
-Crop images to prepare for training
-"""
-
-import click
-# from PIL import Image, ImageOps, ImageFilter, ImageDraw
-
-from app.settings import types
-from app.utils import click_utils
-from app.settings import app_cfg as cfg
-
-color_filters = {'color': 1, 'gray': 2, 'all': 3}
-
-@click.command()
-@click.option('-i', '--input', 'opt_fp_in', required=True,
- help='Input CSV (eg image_files.csv)')
-@click.option('-m', '--media', 'opt_dir_media', required=True,
- help='Input media directory')
-@click.option('-o', '--output', 'opt_fp_out', required=True,
- help='Output CSV')
-@click.option('--size', 'opt_size',
- type=(int, int), default=(300, 300),
- help='Output image size')
-@click.option('-t', '--detector-type', 'opt_detector_type',
- type=cfg.FaceDetectNetVar,
- default=click_utils.get_default(types.FaceDetectNet.DLIB_CNN),
- help=click_utils.show_help(types.FaceDetectNet))
-@click.option('-g', '--gpu', 'opt_gpu', default=0,
- help='GPU index')
-@click.option('--conf', 'opt_conf_thresh', default=0.85, type=click.FloatRange(0,1),
- help='Confidence minimum threshold')
-@click.option('-p', '--pyramids', 'opt_pyramids', default=0, type=click.IntRange(0,4),
- help='Number pyramids to upscale for DLIB detectors')
-@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
- help='Slice list of files')
-@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
- help='Display detections to debug')
-@click.option('-f', '--force', 'opt_force', is_flag=True,
- help='Force overwrite file')
-@click.option('--color', 'opt_color_filter',
- type=click.Choice(color_filters.keys()), default='all',
- help='Filter to keep color or grayscale images (color = keep color')
-@click.option('--largest', 'opt_largest', is_flag=True,
- help='Only keep largest face')
-@click.pass_context
-def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_size, opt_detector_type,
- opt_gpu, opt_conf_thresh, opt_pyramids, opt_slice, opt_display, opt_force, opt_color_filter,
- opt_largest):
- """Converts frames with faces to CSV of ROIs"""
-
- import sys
- import os
- from os.path import join
- from pathlib import Path
- from glob import glob
-
- from tqdm import tqdm
- import numpy as np
- import dlib # must keep a local reference for dlib
- import cv2 as cv
- import pandas as pd
-
- from app.utils import logger_utils, file_utils, im_utils
- from app.processors import face_detector
-
- # -------------------------------------------------
- # init here
-
- log = logger_utils.Logger.getLogger()
-
- if not opt_force and Path(opt_fp_out).exists():
- log.error('File exists. Use "-f / --force" to overwite')
- return
-
- if opt_detector_type == types.FaceDetectNet.CVDNN:
- detector = face_detector.DetectorCVDNN()
- elif opt_detector_type == types.FaceDetectNet.DLIB_CNN:
- detector = face_detector.DetectorDLIBCNN(opt_gpu)
- elif opt_detector_type == types.FaceDetectNet.DLIB_HOG:
- detector = face_detector.DetectorDLIBHOG()
- elif opt_detector_type == types.FaceDetectNet.MTCNN:
- detector = face_detector.DetectorMTCNN()
- elif opt_detector_type == types.FaceDetectNet.HAAR:
- log.error('{} not yet implemented'.format(opt_detector_type.name))
- return
-
-
- # -------------------------------------------------
- # process here
- color_filter = color_filters[opt_color_filter]
-
- # get list of files to process
- df_files = pd.read_csv(opt_fp_in).set_index('index')
-
- if opt_slice:
- df_files = df_files[opt_slice[0]:opt_slice[1]]
- log.debug('processing {:,} files'.format(len(df_files)))
-
-
- data = []
-
- for df_file in tqdm(df_files.itertuples(), total=len(df_files)):
- fp_im = join(opt_dir_media, str(df_file.subdir), f'{df_file.fn}.{df_file.ext}')
- im = cv.imread(fp_im)
-
- # filter out color or grayscale iamges
- if color_filter != color_filters['all']:
- try:
- is_gray = im_utils.is_grayscale(im)
- if is_gray and color_filter != color_filters['gray']:
- log.debug('Skipping grayscale image: {}'.format(fp_im))
- continue
- except Exception as e:
- log.error('Could not check grayscale: {}'.format(fp_im))
- continue
-
- try:
- bboxes = detector.detect(im, size=opt_size, pyramids=opt_pyramids, largest=opt_largest)
- except Exception as e:
- log.error('could not detect: {}'.format(fp_im))
- log.error('{}'.format(e))
- continue
-
- for bbox in bboxes:
- roi = {
- 'image_index': int(df_file.Index),
- 'x': bbox.x,
- 'y': bbox.y,
- 'w': bbox.w,
- 'h': bbox.h,
- 'image_width': im.shape[1],
- 'image_height': im.shape[0]}
- data.append(roi)
-
- # debug display
- if opt_display and len(bboxes):
- bbox_dim = bbox.to_dim(im.shape[:2][::-1]) # w,h
- im_md = im_utils.resize(im, width=min(1200, opt_size[0]))
- for bbox in bboxes:
- bbox_dim = bbox.to_dim(im_md.shape[:2][::-1])
- cv.rectangle(im_md, bbox_dim.pt_tl, bbox_dim.pt_br, (0,255,0), 3)
- cv.imshow('', im_md)
- while True:
- k = cv.waitKey(1) & 0xFF
- if k == 27 or k == ord('q'): # ESC
- cv.destroyAllWindows()
- sys.exit()
- elif k != 255:
- # any key to continue
- break
-
- # save date
- file_utils.mkdirs(opt_fp_out)
- df = pd.DataFrame.from_dict(data)
- df.index.name = 'index'
- df.to_csv(opt_fp_out) \ No newline at end of file