diff options
| author | adamhrv <adam@ahprojects.com> | 2019-01-18 11:00:18 +0100 |
|---|---|---|
| committer | adamhrv <adam@ahprojects.com> | 2019-01-18 11:00:18 +0100 |
| commit | e06af50389f849be0bfe4fa97d39f4519ef2c711 (patch) | |
| tree | 49755b51e1b8b1f8031e5483333570a8e9951272 /megapixels/commands/cv/face_roi.py | |
| parent | 03ad11fb2a3dcd425d50167b15d72d4e0ef536a2 (diff) | |
change to cli_proc
Diffstat (limited to 'megapixels/commands/cv/face_roi.py')
| -rw-r--r-- | megapixels/commands/cv/face_roi.py | 187 |
1 files changed, 0 insertions, 187 deletions
diff --git a/megapixels/commands/cv/face_roi.py b/megapixels/commands/cv/face_roi.py deleted file mode 100644 index e83b0f61..00000000 --- a/megapixels/commands/cv/face_roi.py +++ /dev/null @@ -1,187 +0,0 @@ -""" -Crop images to prepare for training -""" - -import click -# from PIL import Image, ImageOps, ImageFilter, ImageDraw - -from app.settings import types -from app.utils import click_utils -from app.settings import app_cfg as cfg - -color_filters = {'color': 1, 'gray': 2, 'all': 3} - -@click.command() -@click.option('-i', '--input', 'opt_fp_in', default=None, - help='Override enum input filename CSV') -@click.option('-o', '--output', 'opt_fp_out', default=None, - help='Override enum output filename CSV') -@click.option('-m', '--media', 'opt_dir_media', default=None, - help='Override enum media directory') -@click.option('--store', 'opt_data_store', - type=cfg.DataStoreVar, - default=click_utils.get_default(types.DataStore.HDD), - show_default=True, - help=click_utils.show_help(types.Dataset)) -@click.option('--dataset', 'opt_dataset', - type=cfg.DatasetVar, - required=True, - show_default=True, - help=click_utils.show_help(types.Dataset)) -@click.option('--size', 'opt_size', - type=(int, int), default=(480, 480), - help='Output image size') -@click.option('-d', '--detector', 'opt_detector_type', - type=cfg.FaceDetectNetVar, - default=click_utils.get_default(types.FaceDetectNet.CVDNN), - help=click_utils.show_help(types.FaceDetectNet)) -@click.option('-g', '--gpu', 'opt_gpu', default=0, - help='GPU index') -@click.option('--conf', 'opt_conf_thresh', default=0.85, type=click.FloatRange(0,1), - help='Confidence minimum threshold') -@click.option('-p', '--pyramids', 'opt_pyramids', default=0, type=click.IntRange(0,4), - help='Number pyramids to upscale for DLIB detectors') -@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), - help='Slice list of files') -@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False, - help='Display detections to debug') -@click.option('-f', '--force', 'opt_force', is_flag=True, - help='Force overwrite file') -@click.option('--color', 'opt_color_filter', - type=click.Choice(color_filters.keys()), default='all', - help='Filter to keep color or grayscale images (color = keep color') -@click.option('--keep', 'opt_largest', type=click.Choice(['largest', 'all']), default='all', - help='Only keep largest face') -@click.option('--zone', 'opt_zone', default=(0.0, 0.0), type=(float, float), - help='Face center must be located within zone region (0.5 = half width/height)') -@click.pass_context -def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset, opt_size, opt_detector_type, - opt_gpu, opt_conf_thresh, opt_pyramids, opt_slice, opt_display, opt_force, opt_color_filter, - opt_largest, opt_zone): - """Converts frames with faces to CSV of ROIs""" - - import sys - import os - from os.path import join - from pathlib import Path - from glob import glob - - from tqdm import tqdm - import numpy as np - import dlib # must keep a local reference for dlib - import cv2 as cv - import pandas as pd - - from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils - from app.processors import face_detector - from app.models.data_store import DataStore - - # ------------------------------------------------- - # init here - - log = logger_utils.Logger.getLogger() - - # set data_store - data_store = DataStore(opt_data_store, opt_dataset) - - # get filepath out - fp_out = data_store.metadata(types.Metadata.FACE_ROI) if opt_fp_out is None else opt_fp_out - if not opt_force and Path(fp_out).exists(): - log.error('File exists. Use "-f / --force" to overwite') - return - - # set detector - if opt_detector_type == types.FaceDetectNet.CVDNN: - detector = face_detector.DetectorCVDNN() - elif opt_detector_type == types.FaceDetectNet.DLIB_CNN: - detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) - elif opt_detector_type == types.FaceDetectNet.DLIB_HOG: - detector = face_detector.DetectorDLIBHOG() - elif opt_detector_type == types.FaceDetectNet.MTCNN_TF: - detector = face_detector.DetectorMTCNN_TF(gpu=opt_gpu) - elif opt_detector_type == types.FaceDetectNet.HAAR: - log.error('{} not yet implemented'.format(opt_detector_type.name)) - return - - - # get list of files to process - fp_record = data_store.metadata(types.Metadata.FILE_RECORD) if opt_fp_in is None else opt_fp_in - df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index') - if opt_slice: - df_record = df_record[opt_slice[0]:opt_slice[1]] - log.debug('processing {:,} files'.format(len(df_record))) - - # filter out grayscale - color_filter = color_filters[opt_color_filter] - # set largest flag, to keep all or only largest - opt_largest = (opt_largest == 'largest') - - data = [] - skipped_files = [] - processed_files = [] - - for df_record in tqdm(df_record.itertuples(), total=len(df_record)): - fp_im = data_store.face(str(df_record.subdir), str(df_record.fn), str(df_record.ext)) - try: - im = cv.imread(fp_im) - im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) - except Exception as e: - log.debug(f'could not read: {fp_im}') - return - # filter out color or grayscale iamges - if color_filter != color_filters['all']: - try: - is_gray = im_utils.is_grayscale(im) - if is_gray and color_filter != color_filters['gray']: - log.debug('Skipping grayscale image: {}'.format(fp_im)) - continue - except Exception as e: - log.error('Could not check grayscale: {}'.format(fp_im)) - continue - - try: - bboxes_norm = detector.detect(im_resized, pyramids=opt_pyramids, largest=opt_largest, - zone=opt_zone, conf_thresh=opt_conf_thresh) - except Exception as e: - log.error('could not detect: {}'.format(fp_im)) - log.error('{}'.format(e)) - continue - - if len(bboxes_norm) == 0: - skipped_files.append(fp_im) - log.warn(f'no faces in: {fp_im}') - log.warn(f'skipped: {len(skipped_files)}. found:{len(processed_files)} files') - else: - processed_files.append(fp_im) - for bbox in bboxes_norm: - roi = { - 'record_index': int(df_record.Index), - 'x': bbox.x, - 'y': bbox.y, - 'w': bbox.w, - 'h': bbox.h - } - data.append(roi) - - # if display optined - if opt_display and len(bboxes_norm): - # draw each box - for bbox_norm in bboxes_norm: - dim = im_resized.shape[:2][::-1] - bbox_dim = bbox.to_dim(dim) - if dim[0] > 1000: - im_resized = im_utils.resize(im_resized, width=1000) - im_resized = draw_utils.draw_bbox(im_resized, bbox_norm) - - # display and wait - cv.imshow('', im_resized) - display_utils.handle_keyboard() - - # create DataFrame and save to CSV - file_utils.mkdirs(fp_out) - df = pd.DataFrame.from_dict(data) - df.index.name = 'index' - df.to_csv(fp_out) - - # save script - file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out))
\ No newline at end of file |
