diff options
| author | adamhrv <adam@ahprojects.com> | 2019-01-18 11:00:18 +0100 |
|---|---|---|
| committer | adamhrv <adam@ahprojects.com> | 2019-01-18 11:00:18 +0100 |
| commit | e06af50389f849be0bfe4fa97d39f4519ef2c711 (patch) | |
| tree | 49755b51e1b8b1f8031e5483333570a8e9951272 /megapixels/commands/cv/face_landmark_2d_5.py | |
| parent | 03ad11fb2a3dcd425d50167b15d72d4e0ef536a2 (diff) | |
change to cli_proc
Diffstat (limited to 'megapixels/commands/cv/face_landmark_2d_5.py')
| -rw-r--r-- | megapixels/commands/cv/face_landmark_2d_5.py | 146 |
1 files changed, 0 insertions, 146 deletions
diff --git a/megapixels/commands/cv/face_landmark_2d_5.py b/megapixels/commands/cv/face_landmark_2d_5.py deleted file mode 100644 index 40ec6f41..00000000 --- a/megapixels/commands/cv/face_landmark_2d_5.py +++ /dev/null @@ -1,146 +0,0 @@ -""" - -""" - -import click - -from app.settings import types -from app.utils import click_utils -from app.settings import app_cfg as cfg - -color_filters = {'color': 1, 'gray': 2, 'all': 3} - -@click.command() -@click.option('-i', '--input', 'opt_fp_in', default=None, - help='Override enum input filename CSV') -@click.option('-o', '--output', 'opt_fp_out', default=None, - help='Override enum output filename CSV') -@click.option('-m', '--media', 'opt_dir_media', default=None, - help='Override enum media directory') -@click.option('--store', 'opt_data_store', - type=cfg.DataStoreVar, - default=click_utils.get_default(types.DataStore.HDD), - show_default=True, - help=click_utils.show_help(types.Dataset)) -@click.option('--dataset', 'opt_dataset', - type=cfg.DatasetVar, - required=True, - show_default=True, - help=click_utils.show_help(types.Dataset)) -@click.option('-d', '--detector', 'opt_detector_type', - type=cfg.FaceLandmark2D_5Var, - default=click_utils.get_default(types.FaceLandmark2D_5.DLIB), - help=click_utils.show_help(types.FaceLandmark2D_5)) -@click.option('--size', 'opt_size', - type=(int, int), default=(300, 300), - help='Output image size') -@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), - help='Slice list of files') -@click.option('-f', '--force', 'opt_force', is_flag=True, - help='Force overwrite file') -@click.option('-d', '--display', 'opt_display', is_flag=True, - help='Display image for debugging') -@click.pass_context -def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_detector_type, - opt_size, opt_slice, opt_force, opt_display): - """Creates 2D 5-point landmarks""" - - import sys - import os - from os.path import join - from pathlib import Path - from glob import glob - - from tqdm import tqdm - import numpy as np - import cv2 as cv - import pandas as pd - - from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils - from app.processors import face_landmarks - from app.models.data_store import DataStore - from app.models.bbox import BBox - - # ------------------------------------------------- - # init here - - log = logger_utils.Logger.getLogger() - # init filepaths - data_store = DataStore(opt_data_store, opt_dataset) - # set file output path - metadata_type = types.Metadata.FACE_LANDMARK_2D_5 - fp_out = data_store.metadata(metadata_type) if opt_fp_out is None else opt_fp_out - if not opt_force and Path(fp_out).exists(): - log.error('File exists. Use "-f / --force" to overwite') - return - - # init face landmark processors - if opt_detector_type == types.FaceLandmark2D_5.DLIB: - # use dlib 68 point detector - landmark_detector = face_landmarks.Dlib2D_5() - elif opt_detector_type == types.FaceLandmark2D_5.MTCNN: - # use dlib 5 point detector - landmark_detector = face_landmarks.MTCNN2D_5() - else: - log.error('{} not yet implemented'.format(opt_detector_type.name)) - return - - log.info(f'Using landmark detector: {opt_detector_type.name}') - - # load filepath data - fp_record = data_store.metadata(types.Metadata.FILE_RECORD) - df_record = pd.read_csv(fp_record).set_index('index') - # load ROI data - fp_roi = data_store.metadata(types.Metadata.FACE_ROI) - df_roi = pd.read_csv(fp_roi).set_index('index') - # slice if you want - if opt_slice: - df_roi = df_roi[opt_slice[0]:opt_slice[1]] - # group by image index (speedup if multiple faces per image) - df_img_groups = df_roi.groupby('record_index') - log.debug('processing {:,} groups'.format(len(df_img_groups))) - - # store landmarks in list - results = [] - - # iterate groups with file/record index as key - for record_index, df_img_group in tqdm(df_img_groups): - - # acces file record - ds_record = df_record.iloc[record_index] - - # load image - fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext) - im = cv.imread(fp_im) - im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) - - # iterate image group dataframe with roi index as key - for roi_index, df_img in df_img_group.iterrows(): - - # get bbox - x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h - dim = im_resized.shape[:2][::-1] - bbox = BBox.from_xywh(x, y, w, h).to_dim(dim) - - # get landmark points - points = landmark_detector.landmarks(im_resized, bbox) - points_norm = landmark_detector.normalize(points, dim) - points_flat = landmark_detector.flatten(points_norm) - - # display to screen if optioned - if opt_display: - draw_utils.draw_landmarks2D(im_resized, points) - draw_utils.draw_bbox(im_resized, bbox) - cv.imshow('', im_resized) - display_utils.handle_keyboard() - - results.append(points_flat) - - # create DataFrame and save to CSV - file_utils.mkdirs(fp_out) - df = pd.DataFrame.from_dict(results) - df.index.name = 'index' - df.to_csv(fp_out) - - # save script - file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out))
\ No newline at end of file |
