summaryrefslogtreecommitdiff
path: root/megapixels/app
diff options
context:
space:
mode:
authorjules@lens <julescarbon@gmail.com>2019-10-10 13:33:31 +0200
committerjules@lens <julescarbon@gmail.com>2019-10-10 13:33:31 +0200
commit7d72cbb935ec53ce66c6a0c5cdc68f157be1d35f (patch)
treea44049683c3c5e44449fe2698bb080329ecf7e61 /megapixels/app
parent488a65aa5caba91c1384e7bcb2023056e913fc22 (diff)
parentcdc0c7ad21eb764cfe36d7583e126660d87fe02d (diff)
Merge branch 'master' of asdf.us:megapixels_dev
Diffstat (limited to 'megapixels/app')
-rw-r--r--megapixels/app/models/bbox.py14
-rw-r--r--megapixels/app/models/dataset.py14
-rw-r--r--megapixels/app/site/parser.py30
-rw-r--r--megapixels/app/utils/draw_utils.py42
-rw-r--r--megapixels/app/utils/im_utils.py14
5 files changed, 99 insertions, 15 deletions
diff --git a/megapixels/app/models/bbox.py b/megapixels/app/models/bbox.py
index 8ecc8971..c840ea1b 100644
--- a/megapixels/app/models/bbox.py
+++ b/megapixels/app/models/bbox.py
@@ -207,11 +207,21 @@ class BBox:
# -----------------------------------------------------------------
# Convert to
- def to_square(self, bounds):
+ def to_square(self):
'''Forces bbox to square dimensions
- :param bounds: (int, int) w, h of the image
:returns (BBox) in square ratio
'''
+ if self._width > self._height:
+ delta = (self._width - self._height) / 2
+ self._y1 -= delta
+ self._y2 += delta
+ elif self._height > self._width:
+ delta = (self._height - self._width) / 2
+ self._x1 -= delta
+ self._x2 += delta
+ return BBox(self._x1, self._y1, self._x2, self._y2)
+
+
def to_dim(self, dim):
"""scale is (w, h) is tuple of dimensions"""
diff --git a/megapixels/app/models/dataset.py b/megapixels/app/models/dataset.py
index a7227a70..c908da1b 100644
--- a/megapixels/app/models/dataset.py
+++ b/megapixels/app/models/dataset.py
@@ -152,6 +152,8 @@ class Dataset:
image_records = [] # list of image matches w/identity if available
# find most similar feature vectors indexes
#match_idxs = self.similar(query_vec, n_results, threshold)
+
+ # TODO: add cosine similarity
sim_scores = np.linalg.norm(np.array([query_vec]) - np.array(self._face_vectors), axis=1)
match_idxs = np.argpartition(sim_scores, range(n_results))[:n_results]
@@ -180,7 +182,17 @@ class Dataset:
s3_url = self.data_store_s3.face(ds_record.uuid)
bbox_norm = BBox.from_xywh_norm_dim(ds_roi.x, ds_roi.y, ds_roi.w, ds_roi.h, dim)
self.log.debug(f'bbox_norm: {bbox_norm}')
- score = sim_scores[match_idx]
+ self.log.debug(f'match_idx: {match_idx}, record_idx: {record_idx}, roi_index: {roi_index}, len sim_scores: {len(sim_scores)}')
+ try:
+ score = sim_scores[match_idx]
+ except Exception as e:
+ self.log.error(e)
+ try:
+ score = sim_scores[record_idx]
+ except Exception as e:
+ self.log.error(e)
+
+
if types.Metadata.IDENTITY in self._metadata.keys():
ds_id = df_identity.loc[df_identity['identity_key'] == ds_record.identity_key].iloc[0]
diff --git a/megapixels/app/site/parser.py b/megapixels/app/site/parser.py
index 3700efd1..6ab8c700 100644
--- a/megapixels/app/site/parser.py
+++ b/megapixels/app/site/parser.py
@@ -163,6 +163,35 @@ def intro_section(metadata, s3_path):
"""
section = "<section class='intro_section' style='background-image: url({})'>".format(s3_path + metadata['image'])
+ # section += "<div class='inner'>"
+
+ # parts = []
+ # if 'desc' in metadata:
+ # desc = metadata['desc']
+ # # colorize the first instance of the database name in the header
+ # if 'color' in metadata and metadata['title'] in desc:
+ # desc = desc.replace(metadata['title'], "<span style='color: {}'>{}</span>".format(metadata['color'], metadata['title']), 1)
+ # section += "<div class='hero_desc'><span class='bgpad'>{}</span></div>".format(desc, desc)
+
+ # if 'subdesc' in metadata:
+ # subdesc = markdown(metadata['subdesc']).replace('<p>', '').replace('</p>', '')
+ # section += "<div class='hero_subdesc'><span class='bgpad'>{}</span></div>".format(subdesc, subdesc)
+
+ # section += "</div>"
+ section += "</section>"
+
+ if 'caption' in metadata:
+ section += "<section><div class='image'><div class='intro-caption caption'>{}</div></div></section>".format(metadata['caption'])
+
+ return section
+
+
+def intro_section_v1(metadata, s3_path):
+ """
+ Build the intro section for datasets
+ """
+
+ section = "<section class='intro_section' style='background-image: url({})'>".format(s3_path + metadata['image'])
section += "<div class='inner'>"
parts = []
@@ -185,7 +214,6 @@ def intro_section(metadata, s3_path):
return section
-
def fix_images(lines, s3_path):
"""
do our own transformation of the markdown around images to handle wide images etc
diff --git a/megapixels/app/utils/draw_utils.py b/megapixels/app/utils/draw_utils.py
index 7044a62f..1836768b 100644
--- a/megapixels/app/utils/draw_utils.py
+++ b/megapixels/app/utils/draw_utils.py
@@ -3,8 +3,10 @@ from math import sqrt
import numpy as np
import cv2 as cv
+import PIL
+from PIL import ImageDraw
-from app.utils import logger_utils
+from app.utils import logger_utils, im_utils
log = logger_utils.Logger.getLogger()
@@ -118,6 +120,22 @@ def draw_landmarks2D(im, points_norm, radius=3, color=(0,255,0)):
cv.circle(im_dst, pt, radius, color, -1, cv.LINE_AA)
return im_dst
+def draw_landmarks2D_pil(im, points_norm, radius=3, color=(0,255,0)):
+ '''Draws facial landmarks, either 5pt or 68pt
+ '''
+ im_pil = im_utils.ensure_pil(im_utils.bgr2rgb(im))
+ draw = ImageDraw.Draw(im_pil)
+ dim = im.shape[:2][::-1]
+ for x,y in points_norm:
+ x1, y1 = (int(x*dim[0]), int(y*dim[1]))
+ xyxy = (x1, y1, x1+radius, y1+radius)
+ draw.ellipse(xyxy, fill='white')
+ del draw
+ im_dst = im_utils.ensure_np(im_pil)
+ im_dst = im_utils.rgb2bgr(im_dst)
+ return im_dst
+
+
def draw_landmarks3D(im, points, radius=3, color=(0,255,0)):
'''Draws 3D facial landmarks
'''
@@ -126,12 +144,26 @@ def draw_landmarks3D(im, points, radius=3, color=(0,255,0)):
cv.circle(im_dst, (x,y), radius, color, -1, cv.LINE_AA)
return im_dst
-def draw_bbox(im, bbox_norm, color=(0,255,0), stroke_weight=2):
+def draw_bbox(im, bboxes_norm, color=(0,255,0), stroke_weight=2):
'''Draws BBox onto cv image
+ :param color: RGB value
'''
- im_dst = im.copy()
- bbox_dim = bbox_norm.to_dim(im.shape[:2][::-1])
- cv.rectangle(im_dst, bbox_dim.pt_tl, bbox_dim.pt_br, color, stroke_weight, cv.LINE_AA)
+ #im_dst = im.copy()
+ if not type(bboxes_norm) == list:
+ bboxes_norm = [bboxes_norm]
+
+ im_pil = im_utils.ensure_pil(im_utils.bgr2rgb(im))
+ im_pil_draw = ImageDraw.ImageDraw(im_pil)
+
+ for bbox_norm in bboxes_norm:
+ bbox_dim = bbox_norm.to_dim(im.shape[:2][::-1])
+ #cv.rectangle(im_dst, bbox_dim.pt_tl, bbox_dim.pt_br, color, stroke_weight, cv.LINE_AA)
+ xyxy = (bbox_dim.pt_tl, bbox_dim.pt_br)
+ im_pil_draw.rectangle(xyxy, outline=color, width=stroke_weight)
+ # draw.rectangle([x1, y1, x2, y2], outline=, width=3)
+ im_dst = im_utils.ensure_np(im_pil)
+ im_dst = im_utils.rgb2bgr(im_dst)
+ del im_pil_draw
return im_dst
def draw_pose(im, pt_nose, image_pts):
diff --git a/megapixels/app/utils/im_utils.py b/megapixels/app/utils/im_utils.py
index d36c1c32..670d5168 100644
--- a/megapixels/app/utils/im_utils.py
+++ b/megapixels/app/utils/im_utils.py
@@ -11,11 +11,6 @@ from skimage import feature
import imutils
import time
import numpy as np
-import torch
-import torch.nn as nn
-import torchvision.models as models
-import torchvision.transforms as transforms
-from torch.autograd import Variable
from sklearn.metrics.pairwise import cosine_similarity
import datetime
@@ -293,6 +288,13 @@ def bgr2rgb(im):
"""
return cv.cvtColor(im,cv.COLOR_BGR2RGB)
+def rgb2bgr(im):
+ """Wrapper for cv2.cvtColor transform
+ :param im: Numpy.ndarray (BGR)
+ :returns: Numpy.ndarray (RGB)
+ """
+ return cv.cvtColor(im,cv.COLOR_RGB2BGR)
+
def compute_laplacian(im):
# below 100 is usually blurry
return cv.Laplacian(im, cv.CV_64F).var()
@@ -329,7 +331,7 @@ def normalizedGraylevelVariance(img):
s = stdev[0]**2 / mean[0]
return s[0]
-def compute_if_blank(im,width=100,sigma=0,thresh_canny=.1,thresh_mean=4,mask=None):
+def is_blank(im,width=100,sigma=0,thresh_canny=.1,thresh_mean=4,mask=None):
# im is graysacale np
#im = imutils.resize(im,width=width)
#mask = imutils.resize(mask,width=width)