diff options
| author | adamhrv <adam@ahprojects.com> | 2018-12-14 17:22:57 +0100 |
|---|---|---|
| committer | adamhrv <adam@ahprojects.com> | 2018-12-14 17:22:57 +0100 |
| commit | 1690cfb4cc7b7277afca4016c295927cc4f7fafb (patch) | |
| tree | fa9130c2eb0f24f71cf3cede2477bf565d27433c /megapixels/app | |
| parent | 5891e2f13ae9dfead0e1794c399e5ff813e694d3 (diff) | |
add pose filter
Diffstat (limited to 'megapixels/app')
| -rw-r--r-- | megapixels/app/processors/face_pose.py | 148 | ||||
| -rw-r--r-- | megapixels/app/settings/app_cfg.py | 7 | ||||
| -rw-r--r-- | megapixels/app/settings/paths.py | 163 | ||||
| -rw-r--r-- | megapixels/app/settings/types.py | 12 |
4 files changed, 252 insertions, 78 deletions
diff --git a/megapixels/app/processors/face_pose.py b/megapixels/app/processors/face_pose.py index 67ac685d..f2548b32 100644 --- a/megapixels/app/processors/face_pose.py +++ b/megapixels/app/processors/face_pose.py @@ -22,89 +22,83 @@ class FacePoseDLIB: def __init__(self): pass - def pose(self, landmarks, dim): - '''Calculates pose - ''' - degrees = compute_pose_degrees(landmarks, dim) - return degrees + def pose(self, landmarks, dim, project_points=False): + # computes pose using 6 / 68 points from dlib face landmarks + # based on learnopencv.com and + # https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/ + # NB: not as accurate as MTCNN, see @jerryhouuu for ideas + + pose_points_idx = (30, 8, 36, 45, 48, 54) + axis = np.float32([[500,0,0], [0,500,0], [0,0,500]]) + + # 3D model points. + model_points = np.array([ + (0.0, 0.0, 0.0), # Nose tip + (0.0, -330.0, -65.0), # Chin + (-225.0, 170.0, -135.0), # Left eye left corner + (225.0, 170.0, -135.0), # Right eye right corne + (-150.0, -150.0, -125.0), # Left Mouth corner + (150.0, -150.0, -125.0) # Right mouth corner + ]) + + # Assuming no lens distortion + dist_coeffs = np.zeros((4,1)) -# ----------------------------------------------------------- -# utilities -# ----------------------------------------------------------- + # find 6 pose points + pose_points = [] + for j, idx in enumerate(pose_points_idx): + pt = landmarks[idx] + pose_points.append((pt[0], pt[1])) + pose_points = np.array(pose_points, dtype='double') # convert to double + + # create camera matrix + focal_length = dim[0] + center = (dim[0]/2, dim[1]/2) + cam_mat = np.array( + [[focal_length, 0, center[0]], + [0, focal_length, center[1]], + [0, 1, 1]], dtype = "double") + + # solve PnP for rotation and translation + (success, rot_vec, tran_vec) = cv.solvePnP(model_points, pose_points, + cam_mat, dist_coeffs, + flags=cv.SOLVEPNP_ITERATIVE) -def compute_pose_degrees(landmarks, dim): - # computes pose using 6 / 68 points from dlib face landmarks - # based on learnopencv.com and - # https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/ - # NB: not as accurate as MTCNN, see @jerryhouuu for ideas - - pose_points_idx = (30, 8, 36, 45, 48, 54) - axis = np.float32([[500,0,0], [0,500,0], [0,0,500]]) - - # 3D model points. - model_points = np.array([ - (0.0, 0.0, 0.0), # Nose tip - (0.0, -330.0, -65.0), # Chin - (-225.0, 170.0, -135.0), # Left eye left corner - (225.0, 170.0, -135.0), # Right eye right corne - (-150.0, -150.0, -125.0), # Left Mouth corner - (150.0, -150.0, -125.0) # Right mouth corner - ]) - - # Assuming no lens distortion - dist_coeffs = np.zeros((4,1)) + result = {} - # find 6 pose points - pose_points = [] - for j, idx in enumerate(pose_points_idx): - pt = landmarks[idx] - pose_points.append((pt[0], pt[1])) - pose_points = np.array(pose_points, dtype='double') # convert to double - - # create camera matrix - focal_length = dim[0] - center = (dim[0]/2, dim[1]/2) - cam_mat = np.array( - [[focal_length, 0, center[0]], - [0, focal_length, center[1]], - [0, 1, 1]], dtype = "double") - - # solve PnP for rotation and translation - (success, rot_vec, tran_vec) = cv.solvePnP(model_points, pose_points, - cam_mat, dist_coeffs, - flags=cv.SOLVEPNP_ITERATIVE) + # project points + if project_points: + pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs) + pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs) + result['points_model'] = pts_model + result['points_image'] = pts_im + result['point_nose'] = tuple(landmarks[pose_points_idx[0]]) - # project points - #pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs) - #pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs) - rvec_matrix = cv.Rodrigues(rot_vec)[0] - - # convert to degrees - proj_matrix = np.hstack((rvec_matrix, tran_vec)) - eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6] - pitch, yaw, roll = [math.radians(x) for x in eulerAngles] - pitch = math.degrees(math.asin(math.sin(pitch))) - roll = -math.degrees(math.asin(math.sin(roll))) - yaw = math.degrees(math.asin(math.sin(yaw))) - degrees = {'pitch': pitch, 'roll': roll, 'yaw': yaw} - - # add nose point - #pt_nose = tuple(landmarks[pose_points_idx[0]]) - return degrees - #return pts_im, pts_model, degrees, pt_nose + rvec_matrix = cv.Rodrigues(rot_vec)[0] + + # convert to degrees + proj_matrix = np.hstack((rvec_matrix, tran_vec)) + eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6] + pitch, yaw, roll = [math.radians(x) for x in eulerAngles] + pitch = math.degrees(math.asin(math.sin(pitch))) + roll = -math.degrees(math.asin(math.sin(roll))) + yaw = math.degrees(math.asin(math.sin(yaw))) + degrees = {'pitch': pitch, 'roll': roll, 'yaw': yaw} + result['degrees'] = degrees + return result -def draw_pose(im, pts_im, pts_model, pt_nose): - cv.line(im, pt_nose, tuple(pts_im[1].ravel()), (0,255,0), 3) #GREEN - cv.line(im, pt_nose, tuple(pts_im[0].ravel()), (255,0,), 3) #BLUE - cv.line(im, pt_nose, tuple(pts_im[2].ravel()), (0,0,255), 3) #RED - return im + def draw_pose(self, im, pts_im, pts_model, pt_nose): + cv.line(im, pt_nose, tuple(pts_im[1].ravel()), (0,255,0), 3) #GREEN + cv.line(im, pt_nose, tuple(pts_im[0].ravel()), (255,0,), 3) #BLUE + cv.line(im, pt_nose, tuple(pts_im[2].ravel()), (0,0,255), 3) #RED -def draw_degrees(im, degrees, color=(0,255,0)): - for i, item in enumerate(degrees.items()): - k, v = item - t = '{}: {:.2f}'.format(k, v) - origin = (10, 30 + (25 * i)) - cv.putText(im, t, origin, cv.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=2)
\ No newline at end of file + + def draw_degrees(self, im, degrees, color=(0,255,0)): + for i, item in enumerate(degrees.items()): + k, v = item + t = '{}: {:.2f}'.format(k, v) + origin = (10, 30 + (25 * i)) + cv.putText(im, t, origin, cv.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=2)
\ No newline at end of file diff --git a/megapixels/app/settings/app_cfg.py b/megapixels/app/settings/app_cfg.py index 4c540231..7406caad 100644 --- a/megapixels/app/settings/app_cfg.py +++ b/megapixels/app/settings/app_cfg.py @@ -8,6 +8,10 @@ import cv2 as cv from app.settings import types from app.utils import click_utils +# ----------------------------------------------------------------------------- +# Metadata type names +# ----------------------------------------------------------------------------- + # ----------------------------------------------------------------------------- # Enun lists used for custom Click Params @@ -16,6 +20,8 @@ from app.utils import click_utils FaceDetectNetVar = click_utils.ParamVar(types.FaceDetectNet) HaarCascadeVar = click_utils.ParamVar(types.HaarCascade) LogLevelVar = click_utils.ParamVar(types.LogLevel) +MetadataVar = click_utils.ParamVar(types.Metadata) +DatasetVar = click_utils.ParamVar(types.Dataset) # # data_store DATA_STORE = '/data_store_hdd/' @@ -23,6 +29,7 @@ DATA_STORE_NAS = '/data_store_nas/' DATA_STORE_HDD = '/data_store_hdd/' DATA_STORE_SSD = '/data_store_ssd/' DIR_DATASETS = join(DATA_STORE,'datasets') +DIR_DATSET_NAS = join(DIR_DATASETS, 'people') DIR_APPS = join(DATA_STORE,'apps') DIR_APP = join(DIR_APPS,'megapixels') DIR_MODELS = join(DIR_APP,'models') diff --git a/megapixels/app/settings/paths.py b/megapixels/app/settings/paths.py new file mode 100644 index 00000000..bc1333ba --- /dev/null +++ b/megapixels/app/settings/paths.py @@ -0,0 +1,163 @@ +import os +from os.path import join +import logging + +from vframe.settings import vframe_cfg as vcfg +from vframe.settings import types + +class Paths: + + # class properties + MAPPINGS_DATE = vcfg.SUGARCUBE_DATES[0] + DIR_APP_VFRAME = 'apps/vframe/' + DIR_APP_SA = 'apps/syrianarchive' + DIR_MODELS_VFRAME = join(DIR_APP_VFRAME, 'models') + DIR_DARKNET = join(DIR_MODELS_VFRAME, 'darknet/pjreddie') + DIR_DARKNET_VFRAME = join(DIR_MODELS_VFRAME, 'darknet/vframe') + DIR_MEDIA = join(DIR_APP_SA, 'media') + DIR_METADATA = join(DIR_APP_SA, 'metadata') + DIR_RECORDS = join(DIR_APP_SA, 'records') + DIR_REPORTS = join(DIR_APP_SA, 'reports') + + + def __init__(self): + pass + + @classmethod + def DataStorePath(cls, data_store=types.DataStore.HDD): + return '/data_store_{}'.format(data_store.name.lower()) + + # ------------------------------------------------------------------------------- + # Darknet Paths + + @classmethod + def darknet_classes(cls, data_store=types.DataStore.HDD, opt_net=types.DetectorNet.COCO): + if opt_net == types.DetectorNet.COCO: + fp = join(cls.DIR_DARKNET, 'data', 'coco.names') + elif opt_net == types.DetectorNet.COCO_SPP: + fp = join(cls.DIR_DARKNET, 'data', 'coco.names') + elif opt_net == types.DetectorNet.VOC: + fp = join(cls.DIR_DARKNET, 'data', 'voc.names') + elif opt_net == types.DetectorNet.OPENIMAGES: + fp = join(cls.DIR_DARKNET, 'data', 'openimages.names') + elif opt_net == types.DetectorNet.SUBMUNITION: + fp = join(cls.DIR_DARKNET_VFRAME, 'munitions_09b', 'classes.txt') + return join(cls.DataStorePath(data_store), fp) + + @classmethod + def darknet_data(cls, data_store=types.DataStore.HDD, opt_net=types.DetectorNet.COCO, as_bytes=True): + if opt_net == types.DetectorNet.COCO: + fp = join(cls.DIR_DARKNET, 'cfg', 'coco.data') + elif opt_net == types.DetectorNet.COCO_SPP: + fp = join(cls.DIR_DARKNET, 'cfg', 'coco.data') + elif opt_net == types.DetectorNet.VOC: + fp = join(cls.DIR_DARKNET, 'cfg', 'voc.data') + elif opt_net == types.DetectorNet.OPENIMAGES: + fp = join(cls.DIR_DARKNET, 'cfg', 'openimages.data') + elif opt_net == types.DetectorNet.SUBMUNITION: + fp = join(cls.DIR_DARKNET_VFRAME, 'munitions_09b', 'meta.data') + fp = join(cls.DataStorePath(data_store), fp) + if as_bytes: + return bytes(fp, encoding="utf-8") + else: + return fp + + + @classmethod + def darknet_cfg(cls, data_store=types.DataStore.HDD, opt_net=types.DetectorNet.COCO, as_bytes=True): + if opt_net == types.DetectorNet.COCO: + fp = join(cls.DIR_DARKNET, 'cfg', 'yolov3.cfg') + elif opt_net == types.DetectorNet.COCO_SPP: + fp = join(cls.DIR_DARKNET, 'cfg', 'yolov3-spp.cfg') + elif opt_net == types.DetectorNet.VOC: + fp = join(cls.DIR_DARKNET, 'cfg', 'yolov3-voc.cfg') + elif opt_net == types.DetectorNet.OPENIMAGES: + fp = join(cls.DIR_DARKNET, 'cfg', 'yolov3-openimages.cfg') + elif opt_net == types.DetectorNet.SUBMUNITION: + fp = join(cls.DIR_DARKNET_VFRAME, 'munitions_09b', 'yolov3.cfg') + fp = join(cls.DataStorePath(data_store), fp) + if as_bytes: + return bytes(fp, encoding="utf-8") + else: + return fp + + @classmethod + def darknet_weights(cls, data_store=types.DataStore.HDD, opt_net=types.DetectorNet.COCO, as_bytes=True): + if opt_net == types.DetectorNet.COCO: + fp = join(cls.DIR_DARKNET, 'weights', 'yolov3.weights') + elif opt_net == types.DetectorNet.COCO_SPP: + fp = join(cls.DIR_DARKNET, 'weights', 'yolov3-spp.weights') + elif opt_net == types.DetectorNet.VOC: + fp = join(cls.DIR_DARKNET, 'weights', 'yolov3-voc.weights') + elif opt_net == types.DetectorNet.OPENIMAGES: + fp = join(cls.DIR_DARKNET, 'weights', 'yolov3-openimages.weights') + elif opt_net == types.DetectorNet.SUBMUNITION: + fp = join(cls.DIR_DARKNET_VFRAME, 'munitions_09b/weights', 'yolov3_40000.weights') + fp = join(cls.DataStorePath(data_store), fp) + if as_bytes: + return bytes(fp, encoding="utf-8") + else: + return fp + + # ------------------------------------------------------------------------------- + # Metadata Paths + + @classmethod + def mapping_index(cls, opt_date, data_store=types.DataStore.HDD, verified=types.Verified.VERIFIED, + file_format=types.FileExt.PKL): + """Returns filepath to a mapping file. Mapping files are the original Suguarcube mapping data""" + fname = 'index.pkl' if file_format == types.FileExt.PKL else 'index.json' + # data_store = 'data_store_{}'.format(data_store.name.lower()) + date_str = opt_date.name.lower() + fp = join(cls.DataStorePath(data_store), cls.DIR_METADATA, 'mapping', date_str, verified.name.lower(), fname) + return fp + + @classmethod + def media_record_index(cls, data_store=types.DataStore.HDD, verified=types.Verified.VERIFIED, + file_format=types.FileExt.PKL): + """Returns filepath to a mapping file. Mapping files are the original Suguarcube mapping data""" + fname = 'index.pkl' if file_format == types.FileExt.PKL else 'index.json' + metadata_type = types.Metadata.MEDIA_RECORD.name.lower() + fp = join(cls.DataStorePath(data_store), cls.DIR_METADATA, metadata_type, verified.name.lower(), fname) + return fp + + @classmethod + def metadata_index(cls, metadata_type, data_store=types.DataStore.HDD, + verified=types.Verified.VERIFIED, file_format=types.FileExt.PKL): + """Uses key from enum to get folder name and construct filepath""" + fname = 'index.pkl' if file_format == types.FileExt.PKL else 'index.json' + fp = join(cls.DataStorePath(data_store), cls.DIR_METADATA, metadata_type.name.lower(), + verified.name.lower(), fname) + return fp + + @classmethod + def metadata_dir(cls, metadata_type, data_store=types.DataStore.HDD, verified=types.Verified.VERIFIED): + """Uses key from enum to get folder name and construct filepath""" + fp = join(cls.DataStorePath(data_store), cls.DIR_METADATA, metadata_type.name.lower(), + verified.name.lower()) + return fp + + @classmethod + def metadata_tree_dir(cls, metadata_type, data_store=types.DataStore.HDD): + """Uses key from enum to get folder name and construct filepath""" + fp = join(cls.DataStorePath(data_store), cls.DIR_METADATA, metadata_type.name.lower()) + return fp + + @classmethod + def media_dir(cls, media_type, data_store=types.DataStore.HDD, verified=types.Verified.VERIFIED): + """Returns the directory path to a media directory""" + fp = join(cls.DataStorePath(data_store), cls.DIR_MEDIA, media_type.name.lower(), verified.name.lower()) + return fp + + # @classmethod + # def keyframe(cls, dir_media, idx, image_size=types.ImageSize.MEDIUM): + # """Returns path to keyframe image using supplied cls.media directory""" + # idx = str(idx).zfill(vcfg.ZERO_PADDING) + # size_label = vcfg.IMAGE_SIZE_LABELS[image_size] + # fp = join(dir_media, sha256_tree, sha256, idx, size_label, 'index.jpg') + # return fp + + @classmethod + def dnn(cls): + """Returns configurations for available DNNs""" + pass
\ No newline at end of file diff --git a/megapixels/app/settings/types.py b/megapixels/app/settings/types.py index e9107803..7157436d 100644 --- a/megapixels/app/settings/types.py +++ b/megapixels/app/settings/types.py @@ -7,7 +7,6 @@ def find_type(name, enum_type): return None - class FaceDetectNet(Enum): """Scene text detector networks""" HAAR, DLIB_CNN, DLIB_HOG, CVDNN, MTCNN = range(5) @@ -31,3 +30,14 @@ class HaarCascade(Enum): class LogLevel(Enum): """Loger vebosity""" DEBUG, INFO, WARN, ERROR, CRITICAL = range(5) + + +# --------------------------------------------------------------------- +# Metadata types +# -------------------------------------------------------------------- + +class Metadata(Enum): + IDENTITIES, POSES, ROIS, FILE_META, SHAS, UUIDS, FACE_VECTORS = range(7) + +class Dataset(Enum): + LFW, VGG_FACE2 = range(2) |
