diff options
| author | adamhrv <adam@ahprojects.com> | 2019-01-14 22:25:25 +0100 |
|---|---|---|
| committer | adamhrv <adam@ahprojects.com> | 2019-01-14 22:25:25 +0100 |
| commit | df9d364e3664f45c65cac5990d3d742b990217fa (patch) | |
| tree | 8842d844a5ea8e6c87599b8683009cba23262713 /megapixels/app/server/tasks/demo.py | |
| parent | 2fedd95fcee3f048c5f24333ffdb9bb4e13eafe2 (diff) | |
| parent | 3b2f0dc6d969fa323fe8775b4269e17c60192431 (diff) | |
Merge branch 'master' of github.com:adamhrv/megapixels_dev
Diffstat (limited to 'megapixels/app/server/tasks/demo.py')
| -rw-r--r-- | megapixels/app/server/tasks/demo.py | 262 |
1 files changed, 262 insertions, 0 deletions
diff --git a/megapixels/app/server/tasks/demo.py b/megapixels/app/server/tasks/demo.py new file mode 100644 index 00000000..c27b08b5 --- /dev/null +++ b/megapixels/app/server/tasks/demo.py @@ -0,0 +1,262 @@ + +import app.settings.app_cfg as cfg +from app.server.tasks import celery + +from celery.utils.log import get_task_logger +log = get_task_logger(__name__) + +opt_size = (256, 256,) + +@celery.task(bind=True) +def demo_task(self, uuid_name, fn): + + import sys + import os + from os.path import join + from pathlib import Path + import time + + import numpy as np + import cv2 as cv + import dlib + from PIL import Image + import matplotlib.pyplot as plt + + from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils + from app.utils import plot_utils + from app.processors import face_detector, face_landmarks, face_age_gender, face_beauty + # , face_emotion + from app.models.data_store import DataStore + + # TODO add selective testing + opt_gpu = -1 + opt_run_pose = True + opt_run_2d_68 = True + opt_run_3d_68 = True + opt_run_3d_68 = True + + opt_gif_size = (256, 256,) + opt_gif_frames = 15 + + meta = { + 'step': 0, + 'total': 10, + 'message': 'Starting', + 'uuid': uuid_name, + 'data': { 'statistics': {} }, + } + paths = [] + + def step(msg, step=1): + meta['message'] = msg + meta['step'] += step + log.debug('> {}'.format(msg)) + self.update_state(state='PROCESSING', meta=meta) + + def save_image(key, title, data): + fn = '{}_{}.jpg'.format(uuid_name, key) + fpath = os.path.join(cfg.DIR_SITE_USER_CONTENT, fn) + paths.append(fpath) + cv.imwrite(fpath, data) + + meta['data'][key] = { + 'title': title, + 'url': os.path.join('/user_content/', fn), + } + + step('Loading image') + self.update_state(state='PROCESSING', meta=meta) + + # os.path.join('/user_content/', fn) + + # ------------------------------------------------- + # init here + + # load image + im = cv.imread(fn) + im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) + + # ---------------------------------------------------------------------------- + # detect face + + face_detector_instance = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU + step('Detecting face') + st = time.time() + bboxes = face_detector_instance.detect(im_resized, largest=True) + bbox = bboxes[0] + dim = im_resized.shape[:2][::-1] + bbox_dim = bbox.to_dim(dim) + if not bbox: + log.error('No face detected') + meta['error'] = 'No face detected' + self.update_state(state='FAILURE', meta=meta) + return meta + else: + log.info(f'Detected face in {(time.time() - st):.2f}s') + + + # ---------------------------------------------------------------------------- + # detect 3D landmarks + + step('Generating 3D Landmarks') + log.info('loading 3D landmark generator files...') + landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU + log.info('generating 3D landmarks...') + st = time.time() + points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy()) + log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s') + log.info('') + + # draw 3d landmarks + im_landmarks_3d_68 = im_resized.copy() + draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68) + draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim) + + save_image('landmarks_3d_68', '3D Landmarks', im_landmarks_3d_68) + + # ---------------------------------------------------------------------------- + # generate 3D GIF animation + + step('Generating GIF Animation') + log.info('generating 3D animation...') + + fn = '{}_{}.gif'.format(uuid_name, '3d') + fp_out = os.path.join(cfg.DIR_SITE_USER_CONTENT, fn) + paths.append(fp_out) + + st = time.time() + plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out, + size=opt_gif_size, num_frames=opt_gif_frames) + log.info(f'Generated animation in {(time.time() - st):.2f}s') + log.info(f'Saved to: {fp_out}') + log.info('') + + meta['data']['points_3d_68'] = points_3d_68 + meta['data']['points_3d_68'] = { + 'title': '3D Animated GIF', + 'url': os.path.join('/user_content/', fn), + } + + # ---------------------------------------------------------------------------- + # generate 68 point landmarks using dlib + + step('Generating 2D 68PT landmarks') + log.info('initializing face landmarks 68 dlib...') + from app.processors import face_landmarks + landmark_detector_2d_68 = face_landmarks.Dlib2D_68() + log.info('generating 2D 68PT landmarks...') + st = time.time() + points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim) + log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s') + log.info('') + + # draw 2d landmarks + im_landmarks_2d_68 = im_resized.copy() + draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68) + draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim) + save_image('landmarks_2d_68', '2D Landmarks', im_landmarks_2d_68) + + # ---------------------------------------------------------------------------- + # generate pose from 68 point 2D landmarks + + if opt_run_pose: + step('Generating pose') + log.info('initialize pose...') + from app.processors import face_pose + pose_detector = face_pose.FacePoseDLIB() + log.info('generating pose...') + st = time.time() + pose_data = pose_detector.pose(points_2d_68, dim) + log.info(f'generated pose {(time.time() - st):.2f}s') + log.info('') + + im_pose = im_resized.copy() + draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points']) + draw_utils.draw_degrees(im_pose, pose_data) + save_image('pose', 'Pose', im_pose) + + # ---------------------------------------------------------------------------- + # age + + # real + step('Running age predictor') + age_real_predictor = face_age_gender.FaceAgeReal() + st = time.time() + age_real = age_real_predictor.predict(im_resized, bbox_dim) + log.info(f'age real took: {(time.time()-st)/1000:.5f}s') + meta['data']['statistics']['age_real'] = f'{(age_real):.2f}' + + # apparent + age_apparent_predictor = face_age_gender.FaceAgeApparent() + st = time.time() + age_apparent = age_apparent_predictor.predict(im_resized, bbox_dim) + log.info(f'age apparent took: {(time.time()-st)/1000:.5f}s') + meta['data']['statistics']['age_apparent'] = f'{(age_apparent):.2f}' + + # gender + step('Running gender predictor') + gender_predictor = face_age_gender.FaceGender() + st = time.time() + gender = gender_predictor.predict(im_resized, bbox_dim) + log.info(f'gender took: {(time.time()-st)/1000:.5f}s') + meta['data']['statistics']['gender'] = f"M: {gender['m']:.2f}, F: {gender['f']:.2f}" + + # # ---------------------------------------------------------------------------- + # # emotion + + # emotion_predictor = face_emotion.FaceEmotion(gpu=opt_gpu) + # emotion_score = emotion_predictor.emotion(im_resized, bbox_dim) + # log.info(f'emotion score: {(100*emotion_score):.2f}') + + # im_emotion = im_resized.copy() + # draw_utils.draw_bbox(im_emotion, bbox_dim) + # txt = f'emotion score: {(100*emotion_score):.2f}' + # draw_utils.draw_text(im_emotion, bbox_dim.pt_tl, txt) + # save_image('emotion', 'Emotion', im_emotion) + + + # ---------------------------------------------------------------------------- + # beauty + + # TODO fix Keras CPU/GPU device selection issue + # NB: GPU visibility issues with dlib/keras + # Wrap this with cuda toggle and run before init dlib GPU + + step('Running beauty predictor') + device_cur = os.getenv('CUDA_VISIBLE_DEVICES', '') + os.environ['CUDA_VISIBLE_DEVICES'] = '' + beauty_predictor = face_beauty.FaceBeauty() + os.environ['CUDA_VISIBLE_DEVICES'] = device_cur + + beauty_score = beauty_predictor.beauty(im_resized, bbox_dim) + log.info(f'beauty score: {(100*beauty_score):.2f}') + + # # draw 2d landmarks + # im_beauty = im_resized.copy() + # draw_utils.draw_bbox(im_beauty, bbox_dim) + # txt = f'Beauty score: {(100*beauty_score):.2f}' + # draw_utils.draw_text(im_beauty, bbox_dim.pt_tl, txt) + # save_image('beauty', 'Beauty', im_beauty) + meta['data']['statistics']['beauty'] = f'{(100*beauty_score):.2f}' + + step('Done') + + # # 3DDFA + # self.log.debug('Add depth') + # self.log.debug('Add pncc') + + # # TODO + # self.log.debug('Add 3D face model') + # self.log.debug('Add face texture flat') + # self.log.debug('Add ethnicity') + + log.debug('done!!') + + time.sleep(3) + for path in paths: + if os.path.exists(path): + os.remove(path) + + meta['step'] = meta['total'] + meta['state'] = 'SUCCESS' + return meta |
