summaryrefslogtreecommitdiff
path: root/megapixels/app/processors
diff options
context:
space:
mode:
authoradamhrv <adam@ahprojects.com>2019-01-16 13:30:16 +0100
committeradamhrv <adam@ahprojects.com>2019-01-16 13:30:16 +0100
commit65cb506ca182272e2701136097fd00c55dc6bd69 (patch)
treecc5be8e61a8d5173745be1d331b210e967e146b5 /megapixels/app/processors
parentfceeb3b7adbc8d522e9fe1c40e12e9a529199068 (diff)
change bbox to norm, refine face extractor
Diffstat (limited to 'megapixels/app/processors')
-rw-r--r--megapixels/app/processors/face_age_gender.py20
-rw-r--r--megapixels/app/processors/face_beauty.py15
-rw-r--r--megapixels/app/processors/face_detector.py51
-rw-r--r--megapixels/app/processors/face_extractor.py42
-rw-r--r--megapixels/app/processors/face_landmarks.py31
-rw-r--r--megapixels/app/processors/face_pose.py23
-rw-r--r--megapixels/app/processors/face_recognition.py68
7 files changed, 137 insertions, 113 deletions
diff --git a/megapixels/app/processors/face_age_gender.py b/megapixels/app/processors/face_age_gender.py
index 95efa8fc..66c51fa8 100644
--- a/megapixels/app/processors/face_age_gender.py
+++ b/megapixels/app/processors/face_age_gender.py
@@ -32,19 +32,21 @@ class _FaceAgeGender:
'''
dnn_size = (224,224)
- dnn_mean = (104.0, 177.0, 123.0)
+ dnn_mean = (104.0, 177.0, 123.0) # ?
+ # authors used imagenet mean
+ #dnn_mean = [103.939, 116.779, 123.68]
ages = np.arange(0, 101).reshape(101, 1)
+ padding = 0.4
def __init__(self, fp_prototxt, fp_model):
self.log = logger_utils.Logger.getLogger()
self.net = cv.dnn.readNetFromCaffe(fp_prototxt, fp_model)
- def _preprocess(self, im, bbox_dim):
+ def _preprocess(self, im, bbox_norm):
# isolate face ROI, expand bbox by 40% according to authors
# https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
dim = im.shape[:2][::-1]
- bbox_dim_exp = bbox_dim.expand_dim( int(0.4*bbox_dim.width), dim)
- roi = bbox_dim_exp.to_xyxy()
+ roi = bbox_norm.expand(self.padding).to_dim(dim).to_xyxy()
im_face_crop = im[roi[1]:roi[3], roi[0]:roi[2]] # isolate face roi
# resize for blob
@@ -52,6 +54,7 @@ class _FaceAgeGender:
blob = cv.dnn.blobFromImage(im_resized, 1.0, self.dnn_size, self.dnn_mean)
return blob
+
class FaceGender(_FaceAgeGender):
# use "apparent" age models
@@ -61,17 +64,18 @@ class FaceGender(_FaceAgeGender):
def __init__(self):
super().__init__(self.fp_prototxt, self.fp_model)
- def predict(self, im, bbox_dim):
+ def predict(self, im, bbox_norm):
'''Predicts gender from face crop
:param im: (numpy.ndarray) BGR image
:param bbox_dim: (BBox) dimensioned
:returns (dict) with scores for male and female
'''
- im_blob = self._preprocess(im, bbox_dim)
+ im_blob = self._preprocess(im, bbox_norm)
self.net.setInput(im_blob)
preds = self.net.forward()[0]
return {'f': preds[0], 'm': preds[1]}
+
class FaceAgeApparent(_FaceAgeGender):
# use "apparent" age models
@@ -81,13 +85,13 @@ class FaceAgeApparent(_FaceAgeGender):
def __init__(self):
super().__init__(self.fp_prototxt, self.fp_model)
- def predict(self, im, bbox_dim):
+ def predict(self, im, bbox_norm):
'''Predicts apparent age from face crop
:param im: (numpy.ndarray) BGR image
:param bbox_dim: (BBox) dimensioned
:returns (float) predicted age
'''
- im_blob = self._preprocess(im, bbox_dim)
+ im_blob = self._preprocess(im, bbox_norm)
self.net.setInput(im_blob)
preds = self.net.forward()[0]
age = preds.dot(self.ages).flatten()[0]
diff --git a/megapixels/app/processors/face_beauty.py b/megapixels/app/processors/face_beauty.py
index a01c6834..e2d54c98 100644
--- a/megapixels/app/processors/face_beauty.py
+++ b/megapixels/app/processors/face_beauty.py
@@ -1,3 +1,7 @@
+"""
+https://github.com/ustcqidi/BeautyPredict
+"""
+
import sys
import os
from os.path import join
@@ -45,18 +49,15 @@ class FaceBeauty:
self.model.load_weights(fp_model)
- def beauty(self, im, bbox_dim):
+ def beauty(self, im, bbox_norm):
'''Predicts facial "beauty" score based on SCUT-FBP attractiveness labels
:param im: (numpy.ndarray) BGR image
:param bbox_dim: (BBox) dimensioned BBox
:returns (float) 0.0-1.0 with 1 being most attractive
'''
-
- face = bbox_dim.to_xyxy()
- self.log.debug(f'face: {face}')
-
- cropped_im = im[face[1]:face[3], face[0]:face[2]]
-
+ dim = im.shape[:2][::-1]
+ roi = bbox_norm.to_dim(dim).to_xyxy()
+ cropped_im = im[roi[1]:roi[3], roi[0]:roi[2]]
im_resized = cv.resize(cropped_im, (224, 224)) # force size
im_norm = np.array([(im_resized - 127.5) / 127.5]) # subtract mean
diff --git a/megapixels/app/processors/face_detector.py b/megapixels/app/processors/face_detector.py
index 0e194f7d..fbf91071 100644
--- a/megapixels/app/processors/face_detector.py
+++ b/megapixels/app/processors/face_detector.py
@@ -14,8 +14,57 @@ from app.settings import app_cfg as cfg
from app.settings import types
-class DetectorMTCNN:
+class DetectorMTCNN_CVDNN:
+
+ # https://github.com/CongWeilin/mtcnn-caffe
+
+ def __init__(self):
+ pass
+
+
+class DetectorMTCNN_PT:
+
+ # https://github.com/TropComplique/mtcnn-pytorch/
+ # pip install mtcnn
+
+ dnn_size = (300, 300)
+
+ def __init__(self, size=(400,400), gpu=0):
+ self.log = logger_utils.Logger.getLogger()
+ device_cur = os.getenv('CUDA_VISIBLE_DEVICES', '')
+ self.log.info(f'Change CUDA_VISIBLE_DEVICES from "{device_cur}" to "{gpu}"')
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
+ from mtcnn.mtcnn import MTCNN
+ self.detector = MTCNN()
+ os.environ['CUDA_VISIBLE_DEVICES'] = device_cur # reset
+
+ def detect(self, im, size=(400,400), conf_thresh=None, pyramids=None, largest=False, zone=None):
+ '''Detects face using MTCNN and returns (list) of BBox
+ :param im: (numpy.ndarray) image
+ :returns list of BBox
+ '''
+ bboxes = []
+ dnn_size = self.dnn_size if size is None else size
+
+ im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
+ dim = im.shape[:2][::-1]
+ dets = self.detector.detect_faces(im)
+ for det in dets:
+ rect = det['box']
+ #keypoints = det['keypoints'] # not using here. see 'face_landmarks.py'
+ bbox = BBox.from_xywh_dim(*rect, dim)
+ bboxes.append(bbox)
+
+ if largest and len(bboxes) > 1:
+ # only keep largest
+ bboxes.sort(key=operator.attrgetter('area'), reverse=True)
+ bboxes = [bboxes[0]]
+
+ return bboxes
+
+class DetectorMTCNN_TF:
+ # using TF for inference can cause GPU issues with other frameworks
# https://github.com/ipazc/mtcnn
# pip install mtcnn
diff --git a/megapixels/app/processors/face_extractor.py b/megapixels/app/processors/face_extractor.py
index 2666e090..f618cd36 100644
--- a/megapixels/app/processors/face_extractor.py
+++ b/megapixels/app/processors/face_extractor.py
@@ -44,6 +44,9 @@ class Extractor:
vec_flat[f'd{idx}'] = val
return vec_flat
+ def to_str(self, vec):
+ return ','.join([str(x) for x in vec])
+
def unflatten_df(self, df):
# convert from
return [df[f'd{i}'] for i in range(1,257)]
@@ -64,25 +67,54 @@ class ExtractorVGG(Extractor):
self.dnn = cv.dnn.readNetFromCaffe(fp_prototxt, fp_model)
self.feat_layer = self.dnn.getLayerNames()[-2]
- def extract(self, im, bbox_norm, padding=0.3):
+ def extract_jitter(self, im, bbox_norm):
+ '''(experimental) Extracts feature vector for face crop
+ :param im:
+ :param bbox_norm: (BBox) normalized
+ :param padding: (float) percent to extend ROI
+ :param jitters: not used here
+ :returns (list) of (float)'''
+ dim = im.shape[:2][::-1]
+ num_jitters = cfg.DEFAULT_NUM_JITTERS
+ padding = cfg.DEFAULT_FACE_PADDING_VGG_FACE2
+ pad_adj = .00875 * padding # percentage of padding to vary
+ paddings = np.linspace(padding - pad_adj, padding + pad_adj, num=num_jitters)
+ jitter_amt = cfg.DEFAULT_JITTER_AMT
+ vecs = []
+ for i in range(num_jitters):
+ bbox_norm_jit = bbox_norm.jitter(jitter_amt) # jitters w, h, center
+ bbox_ext = bbox_norm_jit.expand(paddings[i])
+ #bbox_ext = bbox_norm.expand(paddings[i])
+ x1,y1,x2,y2 = bbox_ext.to_dim(dim).to_xyxy()
+ im_crop = im[y1:y2, x1:x2]
+ # According to VGG, model trained using Bilinear interpolation (INTER_LINEAR)
+ im_crop = cv.resize(im_crop, self.dnn_dim, interpolation=cv.INTER_LINEAR)
+ blob = cv.dnn.blobFromImage(im_crop, 1.0, self.dnn_dim, self.dnn_mean)
+ self.dnn.setInput(blob)
+ vec = np.array(self.dnn.forward(self.feat_layer)[0])
+ vec_norm = vec/np.linalg.norm(vec) # normalize
+ vecs.append(vec_norm)
+ vec_norm = np.mean(np.array(vecs), axis=0)
+ return vec_norm
+
+ def extract(self, im, bbox_norm):
'''Extracts feature vector for face crop
:param im:
:param bbox_norm: (BBox) normalized
:param padding: (float) percent to extend ROI
:param jitters: not used here
:returns (list) of (float)'''
-
+ padding = cfg.DEFAULT_FACE_PADDING_VGG_FACE2
bbox_ext = bbox_norm.expand(padding)
dim = im.shape[:2][::-1]
- bbox_ext_dim = bbox_ext.to_dim(dim)
- x1,y1,x2,y2 = bbox_ext_dim.to_xyxy()
+ x1,y1,x2,y2 = bbox_ext.to_dim(dim).to_xyxy()
im = im[y1:y2, x1:x2]
# According to VGG, model trained using Bilinear interpolation (INTER_LINEAR)
im = cv.resize(im, self.dnn_dim, interpolation=cv.INTER_LINEAR)
blob = cv.dnn.blobFromImage(im, 1.0, self.dnn_dim, self.dnn_mean)
self.dnn.setInput(blob)
vec = np.array(self.dnn.forward(self.feat_layer)[0])
- vec_norm = np.array(vec)/np.linalg.norm(vec) # normalize
+ vec_norm = vec/np.linalg.norm(vec) # normalize
return vec_norm
diff --git a/megapixels/app/processors/face_landmarks.py b/megapixels/app/processors/face_landmarks.py
index 171fc666..231e378f 100644
--- a/megapixels/app/processors/face_landmarks.py
+++ b/megapixels/app/processors/face_landmarks.py
@@ -30,6 +30,9 @@ class Landmarks2D:
self.log.warn('Define landmarks() function')
pass
+ def to_str(self, vec):
+ return ','.join([','.join(list(map(str,[x,y]))) for x,y in vec])
+
def flatten(self, points):
'''Converts list of point-tupes into a flattened list for CSV
:param points: (list) of x,y points
@@ -69,9 +72,9 @@ class FaceAlignment2D_68(Landmarks2D):
# predict landmarks
points = self.fa.get_landmarks(im) # returns array of arrays of 68 2D pts/face
# convert to data type
- points = [list(map(int, p)) for p in points[0]]
- return points
-
+ w,h = im.shape[:2][::-1]
+ points = [tuple(x/w, y/h) for x,y in points[0]]
+ return points # normalized
class Dlib2D(Landmarks2D):
@@ -82,15 +85,16 @@ class Dlib2D(Landmarks2D):
self.predictor = dlib.shape_predictor(model)
self.log.info(f'loaded predictor model: {model}')
- def landmarks(self, im, bbox):
+ def landmarks(self, im, bbox_norm):
'''Generates 68-pt landmarks using dlib predictor
:param im: (numpy.ndarray) BGR image
:param bbox: (app.models.BBox) dimensioned
- :returns (list) of (int, int) for x,y values
+ :returns (list) of (float, float) for normalized x,y values
'''
- bbox = bbox.to_dlib()
+ dim = im.shape[:2][::-1]
+ roi_dlib = bbox_norm.to_dim(dim).to_dlib()
im_gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
- points = [[p.x, p.y] for p in self.predictor(im_gray, bbox).parts()]
+ points = [[p.x/dim[0], p.y/dim[1]] for p in self.predictor(im_gray, roi_dlib).parts()]
return points
@@ -121,13 +125,13 @@ class MTCNN2D_5(Landmarks2D):
from mtcnn.mtcnn import MTCNN
self.detector = MTCNN()
- def landmarks(self, im, bbox):
+ def landmarks(self, im, bbox_norm):
'''Detects face using MTCNN and returns (list) of BBox
:param im: (numpy.ndarray) image
:returns list of BBox
'''
results = []
- dim_wh = im.shape[:2][::-1] # (w, h)
+ dim = im.shape[:2][::-1] # (w, h)
# run MTCNN to get bbox and landmarks
dets = self.detector.detect_faces(im)
@@ -138,7 +142,7 @@ class MTCNN2D_5(Landmarks2D):
#rect = det['box']
points = det['keypoints']
# convert to normalized for contain-comparison
- points_norm = [np.array(pt)/dim_wh for pname, pt in points.items()]
+ points_norm = [np.array(pt)/dim for pname, pt in points.items()]
contains = False not in [bbox.contains(pn) for pn in points_norm]
if contains:
results.append(points) # append original points
@@ -185,14 +189,17 @@ class FaceAlignment3D_68(Landmarks3D):
device = f'cuda:{gpu}' if gpu > -1 else 'cpu'
self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device=device, flip_input=flip_input)
- def landmarks(self, im, rect):
+ def landmarks(self, im, bbox_norm):
'''Calculates the 3D facial landmarks
:param im: (numpy.ndarray) BGR image
- :param rect: (list) of face (x1, y1, x2, y2)
+ :param bbox_norm: (BBox) of face roi
:returns (list) of 68 (int) (tuples) as (x,y, z)
'''
# predict landmarks
+ dim = im.shape[:2][::-1]
+ rect = bbox_norm.to_dim(dim).to_xyxy()
points = self.fa.get_landmarks(im, [rect]) # returns array of arrays of 68 3D pts/face
# convert to data type
+ # TODO normalize this, but how to norm 3D?
points = [list(map(int, p)) for p in points[0]]
return points \ No newline at end of file
diff --git a/megapixels/app/processors/face_pose.py b/megapixels/app/processors/face_pose.py
index 5ac510ec..49a39a53 100644
--- a/megapixels/app/processors/face_pose.py
+++ b/megapixels/app/processors/face_pose.py
@@ -21,10 +21,10 @@ class FacePoseDLIB:
pose_types = {'pitch': (0,0,255), 'roll': (255,0,0), 'yaw': (0,255,0)}
def __init__(self):
- pass
+ self.log = logger_utils.Logger.getLogger()
- def pose(self, landmarks, dim):
+ def pose(self, landmarks_norm, dim):
'''Returns face pose information
:param landmarks: (list) of 68 (int, int) xy tuples
:param dim: (tuple|list) of image (width, height)
@@ -55,9 +55,10 @@ class FacePoseDLIB:
# find 6 pose points
pose_points = []
for j, idx in enumerate(pose_points_idx):
- pt = landmarks[idx]
- pose_points.append((pt[0], pt[1]))
- pose_points = np.array(pose_points, dtype='double') # convert to double
+ x,y = landmarks_norm[idx]
+ pt = (int(x*dim[0]), int(y*dim[1]))
+ pose_points.append(pt)
+ pose_points = np.array(pose_points, dtype='double') # convert to double, real dimensions
# create camera matrix
focal_length = dim[0]
@@ -75,18 +76,16 @@ class FacePoseDLIB:
result = {}
# project points
- #if project_points:
pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs)
pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs)
- #result['points_model'] = pts_model
- #result['points_image'] = pts_im
+
result['points'] = {
- 'pitch': pts_im[0],
- 'roll': pts_im[2],
- 'yaw': pts_im[1]
+ 'pitch': list(map(int,pts_im[0][0])),
+ 'roll': list(map(int,pts_im[2][0])),
+ 'yaw': list(map(int,pts_im[1][0]))
}
- result['point_nose'] = tuple(landmarks[pose_points_idx[0]])
+ result['point_nose'] = tuple(map(int,pose_points[0]))
rvec_matrix = cv.Rodrigues(rot_vec)[0]
# convert to degrees
diff --git a/megapixels/app/processors/face_recognition.py b/megapixels/app/processors/face_recognition.py
deleted file mode 100644
index 76f00aa1..00000000
--- a/megapixels/app/processors/face_recognition.py
+++ /dev/null
@@ -1,68 +0,0 @@
-import os
-from os.path import join
-from pathlib import Path
-
-import cv2 as cv
-import numpy as np
-import dlib
-import imutils
-
-from app.utils import im_utils, logger_utils
-from app.models.bbox import BBox
-from app.settings import app_cfg as cfg
-from app.settings import types
-
-class RecognitionDLIB:
-
- # https://github.com/davisking/dlib/blob/master/python_examples/face_recognition.py
- # facerec.compute_face_descriptor(img, shape, 100, 0.25)
-
- def __init__(self, gpu=0):
- self.log = logger_utils.Logger.getLogger()
-
- if gpu > -1:
- cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
- os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
-
- self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_5PT)
- self.facerec = dlib.face_recognition_model_v1(cfg.DIR_MODELS_DLIB_FACEREC_RESNET)
-
- if gpu > -1:
- os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset GPU env
-
-
- def vec(self, im, bbox, width=100,
- jitters=cfg.DLIB_FACEREC_JITTERS, padding=cfg.DLIB_FACEREC_PADDING):
- '''Converts image and bbox into 128d vector
- :param im: (numpy.ndarray) BGR image
- :param bbox: (BBox)
- '''
- # scale the image so the face is always 100x100 pixels
-
- #self.log.debug('compute scale')
- scale = width / bbox.width
- #im = cv.resize(im, (scale, scale), cv.INTER_LANCZOS4)
- #self.log.debug('resize')
- cv.resize(im, None, fx=scale, fy=scale, interpolation=cv.INTER_LANCZOS4)
- #self.log.debug('to dlib')
- bbox_dlib = bbox.to_dlib()
- #self.log.debug('precitor')
- face_shape = self.predictor(im, bbox_dlib)
- # vec = self.facerec.compute_face_descriptor(im, face_shape, jitters, padding)
- #self.log.debug('vec')
- vec = self.facerec.compute_face_descriptor(im, face_shape, jitters)
- #vec = self.facerec.compute_face_descriptor(im, face_shape)
- return vec
-
- def flatten(self, vec):
- '''Converts 128D vector into a flattened list for CSV
- :param points: (list) a feature vector as list of floats
- :returns dict item for each point (eg {'d1':0.28442156, 'd1': 0.1868632})
- '''
- vec_flat = {}
- for idx, val in enumerate(vec, 1):
- vec_flat[f'd{idx}'] = val
- return vec_flat
-
- def similarity(self, query_enc, known_enc):
- return np.linalg.norm(query_enc - known_enc, axis=1)