diff options
| author | adamhrv <adam@ahprojects.com> | 2019-04-10 23:06:55 +0200 |
|---|---|---|
| committer | adamhrv <adam@ahprojects.com> | 2019-04-10 23:06:55 +0200 |
| commit | 3dedfa97961c1c4569ee30fc9dc039ee46f8b19d (patch) | |
| tree | cf0c51ad045e38945d2e001fd4645105fc725740 | |
| parent | 908eef38b87c28d96379900e3ea9bc97a5733a7e (diff) | |
update html
| -rw-r--r-- | site/public/about/legal/index.html | 19 | ||||
| -rw-r--r-- | site/public/datasets/brainwash/index.html | 2 | ||||
| -rw-r--r-- | site/public/datasets/duke_mtmc/index.html | 7 | ||||
| -rw-r--r-- | site/public/datasets/oxford_town_centre/index.html | 4 |
4 files changed, 16 insertions, 16 deletions
diff --git a/site/public/about/legal/index.html b/site/public/about/legal/index.html index 4af4ba05..a603f999 100644 --- a/site/public/about/legal/index.html +++ b/site/public/about/legal/index.html @@ -34,20 +34,17 @@ <li><a class="current" href="/about/legal/">Legal / Privacy</a></li> </ul> </section><p>MegaPixels.cc Terms and Privacy</p> -<p>MegaPixels is an independent art and research project about the origins and ethics of publicly available face analysis image datasets. By accessing MegaPixels (the <em>Service</em> or <em>Services</em>) you agree to the terms and conditions set forth below.</p> -<h3>Changes</h3> -<p>We reserve the right, at our sole discretion, to modify or replace these Terms at any time. If a revision is material we will try to provide at least 30 days notice prior to any new terms taking effect. What constitutes a material change will be determined at our sole discretion.</p> -<p>By continuing to access or use our Service after those revisions become effective, you agree to be bound by the revised terms. If you do not agree to the new terms, please stop using the Service.</p> +<p>MegaPixels is an independent and academic art and research project about the origins and ethics of publicly available face analysis image datasets. By accessing MegaPixels (the <em>Service</em> or <em>Services</em>) you agree to the terms and conditions set forth below.</p> <h2>Privacy</h2> -<p>The MegaPixels site has been designed to minimize the amount of network requests to 3rd party services and therefore prioritize the privacy of the viewer by only loading local dependencies. Additionaly, this site does not use any anaytics programs to monitor site viewers. In fact, the only data collected are the necessary server logs that used only for preventing misuse, which are deleteted at regular short-term intervals.</p> +<p>The MegaPixels site has been designed to minimize the amount of network requests to 3rd party services and therefore prioritize the privacy of the viewer. This site does not use any local or external analytics programs to monitor site viewers. In fact, the only data collected are the necessary server logs used only for preventing misuse, which are deleted at short-term intervals.</p> <h2>3rd Party Services</h2> -<p>In order to provide certain features of the site, some 3rd party services are needed. Currently, the MegaPixels.cc site uses two 3rd party services: (1) Leaflet.js for the interactive map and (2 Digital Ocean Spaces as a condent delivery network. Both services encrypt your requests to their server using HTTPS and neither service requires storing any cookies or authentication. However, both services will store files in your web browser's local cache (local storage) to improve loading performance. None of these local storage files are using for analytics, cookie-like technologies, tracking, or any similar purpose.</p> +<p>In order to provide certain features of the site, some 3rd party services are needed. Currently, the MegaPixels.cc site uses two 3rd party services: (1) Leaflet.js for the interactive map and (2) Digital Ocean Spaces as a content delivery network. Both services encrypt your requests to their server using HTTPS and neither service requires storing any cookies or authentication. However, both services will store files in your web browser's local cache (local storage) to improve loading performance. None of these local storage files are using for analytics, tracking, or any similar purpose.</p> <h3>Links To Other Web Sites</h3> -<p>The MegaPixels.cc contains many links to 3rd party websites, especically in the list of citations that are provided for each dataset. This website has no control over and assumes no responsibility for, the content, privacy policies, or practices of any third party web sites or services. You further acknowledge and agree that megapixels.cc shall not be responsible or liable, directly or indirectly, for any damage or loss caused or alleged to be caused by or in connection with use of or reliance on any such content, goods or services available on or through any such web sites or services.</p> +<p>The MegaPixels.cc contains many links to 3rd party websites, especially in the list of citations that are provided for each dataset. This website has no control over and assumes no responsibility for, the content, privacy policies, or practices of any third party web sites or services. You acknowledge and agree that megapixels.cc shall not be responsible or liable, directly or indirectly, for any damage or loss caused or alleged to be caused by or in connection with use of or reliance on any such content, goods or services available on or through any such web sites or services.</p> <p>We advise you to read the terms and conditions and privacy policies of any third-party web sites or services that you visit.</p> <h3>The Information We Provide</h3> -<p>While every intention is made to verify and publish only verifiablenformation, at times amendments to accuracy may be required. In no event will the operators of this site be liable for your use or misuse of the information provided.</p> -<p>We may terminate or suspend access to our Service immediately, without prior notice or liability, for any reason whatsoever, including without limitation if you breach the Terms.</p> +<p>While every intention is made to publish only verifiable information, at times existing information may be revised or deleted and new information may be added for clarity or correction. In no event will the operators of this site be liable for your use or misuse of the information provided.</p> +<p>We may terminate or suspend access to our Service immediately without prior notice or liability, for any reason whatsoever, including without limitation if you breach the Terms.</p> <p>All provisions of the Terms which by their nature should survive termination shall survive termination, including, without limitation, ownership provisions, warranty disclaimers, indemnity and limitations of liability.</p> <h3>Prohibited Uses</h3> <p>You may not access or use, or attempt to access or use, the Services to take any action that could harm us or a third party. You may not use the Services in violation of applicable laws or in violation of our or any third party’s intellectual property or other proprietary or legal rights. You further agree that you shall not attempt (or encourage or support anyone else's attempt) to circumvent, reverse engineer, decrypt, or otherwise alter or interfere with the Services, or any content thereof, or make any unauthorized use thereof.</p> @@ -55,7 +52,7 @@ <p>(i) access any part of the Services, Content, data or information you do not have permission or authorization to access;</p> <p>(ii) use robots, spiders, scripts, service, software or any manual or automatic device, tool, or process designed to data mine or scrape the Content, data or information from the Services, or otherwise access or collect the Content, data or information from the Services using automated means;</p> <p>(iii) use services, software or any manual or automatic device, tool, or process designed to circumvent any restriction, condition, or technological measure that controls access to the Services in any way, including overriding any security feature or bypassing or circumventing any access controls or use limits of the Services;</p> -<p>(iv) cache or archive the Content (except for a public search engine’s use of spiders for creating search indices);</p> +<p>(iv) cache or archive the Content (except for a public search engine’s use of spiders for creating search indices) with prior written consent;</p> <p>(v) take action that imposes an unreasonable or disproportionately large load on our network or infrastructure; and</p> <p>(vi) do anything that could disable, damage or change the functioning or appearance of the Services, including the presentation of advertising.</p> <p>Engaging in a prohibited use of the Services may result in civil, criminal, and/or administrative penalties, fines, or sanctions against the user and those assisting the user.</p> @@ -64,6 +61,8 @@ <p>Our failure to enforce any right or provision of these Terms will not be considered a waiver of those rights. If any provision of these Terms is held to be invalid or unenforceable by a court, the remaining provisions of these Terms will remain in effect. These Terms constitute the entire agreement between us regarding our Service, and supersede and replace any prior agreements we might have between us regarding the Service.</p> <h3>Indemnity</h3> <p>You hereby indemnify, defend and hold harmless MegaPixels (and its creators) and all officers, directors, owners, agents, information providers, affiliates, licensors and licensees (collectively, the "Indemnified Parties") from and against any and all liability and costs, including, without limitation, reasonable attorneys' fees, incurred by the Indemnified Parties in connection with any claim arising out of any breach by you or any user of your account of these Terms of Service or the foregoing representations, warranties and covenants. You shall cooperate as fully as reasonably required in the defense of any such claim. We reserves the right, at its own expense, to assume the exclusive defense and control of any matter subject to indemnification by you.</p> +<h3>Changes</h3> +<p>We reserve the right, at our sole discretion, to modify or replace these Terms at any time. By continuing to use or access our Service after revisions become effective, you agree to be bound by the revised terms. If you do not agree to revised terms, please do not use the Service.</p> </section> </div> diff --git a/site/public/datasets/brainwash/index.html b/site/public/datasets/brainwash/index.html index 240ec499..10ee577c 100644 --- a/site/public/datasets/brainwash/index.html +++ b/site/public/datasets/brainwash/index.html @@ -117,6 +117,8 @@ <li>change supp images to 2x2 grid with bboxes</li> <li>add bounding boxes to the header image</li> <li>remake montage with randomized images, with bboxes</li> +<li>add ethics link to Stanford</li> +<li>add optout info</li> </ul> </section><section><ul class="footnotes"><li><a name="[^readme]" class="footnote_shim"></a><span class="backlinks"><a href="#[^readme]_1">a</a></span><p>"readme.txt" <a href="https://exhibits.stanford.edu/data/catalog/sx925dc9385">https://exhibits.stanford.edu/data/catalog/sx925dc9385</a>.</p> </li><li><a name="[^end_to_end]" class="footnote_shim"></a><span class="backlinks"><a href="#[^end_to_end]_1">a</a></span><p>Stewart, Russel. Andriluka, Mykhaylo. "End-to-end people detection in crowded scenes". 2016.</p> diff --git a/site/public/datasets/duke_mtmc/index.html b/site/public/datasets/duke_mtmc/index.html index 8ff4ef43..0d082c15 100644 --- a/site/public/datasets/duke_mtmc/index.html +++ b/site/public/datasets/duke_mtmc/index.html @@ -26,7 +26,7 @@ </header> <div class="content content-dataset"> - <section class='intro_section' style='background-image: url(https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/duke_mtmc/assets/background.jpg)'><div class='inner'><div class='hero_desc'><span class='bgpad'><span class="dataset-name">Duke MTMC</span> is a dataset of surveillance camera footage of students on Duke University campus</span></div><div class='hero_subdesc'><span class='bgpad'>Duke MTMC contains over 2 million video frames and 2,000 unique identities collected from 8 HD cameras at Duke University campus in March 2014 + <section class='intro_section' style='background-image: url(https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/duke_mtmc/assets/background.jpg)'><div class='inner'><div class='hero_desc'><span class='bgpad'><span class="dataset-name">Duke MTMC</span> is a dataset of surveillance camera footage of students on Duke University campus</span></div><div class='hero_subdesc'><span class='bgpad'>Duke MTMC contains over 2 million video frames and 2,700 unique identities collected from 8 HD cameras at Duke University campus in March 2014 </span></div></div></section><section><div class='left-sidebar'><div class='meta'> <div class='gray'>Published</div> <div>2016</div> @@ -46,10 +46,9 @@ <div class='gray'>Website</div> <div><a href='http://vision.cs.duke.edu/DukeMTMC/' target='_blank' rel='nofollow noopener'>duke.edu</a></div> </div></div><h2>Duke MTMC</h2> -<p>[ page under development ]</p> <p>The Duke Multi-Target, Multi-Camera Tracking Dataset (MTMC) is a dataset of video recorded on Duke University campus for research and development of networked camera surveillance systems. MTMC tracking is used for citywide dragnet surveillance systems such as those used throughout China by SenseTime<a class="footnote_shim" name="[^sensetime_qz]_1"> </a><a href="#[^sensetime_qz]" class="footnote" title="Footnote 1">1</a> and the oppressive monitoring of 2.5 million Uyghurs in Xinjiang by SenseNets<a class="footnote_shim" name="[^sensenets_uyghurs]_1"> </a><a href="#[^sensenets_uyghurs]" class="footnote" title="Footnote 2">2</a>. In fact researchers from both SenseTime<a class="footnote_shim" name="[^sensetime1]_1"> </a><a href="#[^sensetime1]" class="footnote" title="Footnote 4">4</a> <a class="footnote_shim" name="[^sensetime2]_1"> </a><a href="#[^sensetime2]" class="footnote" title="Footnote 5">5</a> and SenseNets<a class="footnote_shim" name="[^sensenets_sensetime]_1"> </a><a href="#[^sensenets_sensetime]" class="footnote" title="Footnote 3">3</a> used the Duke MTMC dataset for their research.</p> <p>The Duke MTMC dataset is unique because it is the largest publicly available MTMC and person re-identification dataset and has the longest duration of annotated video. In total, the Duke MTMC dataset provides over 14 hours of 1080p video from 8 synchronized surveillance cameras.<a class="footnote_shim" name="[^duke_mtmc_orig]_1"> </a><a href="#[^duke_mtmc_orig]" class="footnote" title="Footnote 6">6</a> It is among the most widely used person re-identification datasets in the world. The approximately 2,700 unique people in the Duke MTMC videos, most of whom are students, are used for research and development of surveillance technologies by commercial, academic, and even defense organizations.</p> -</section><section class='images'><div class='image'><img src='https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/duke_mtmc/assets/duke_mtmc_reid_montage.jpg' alt=' A collection of 1,600 out of the 2,700 students captured into the Duke MTMC surveillance research dataset. These students were also included in the Duke MTMC Re-ID dataset extension. © megapixels.cc'><div class='caption'> A collection of 1,600 out of the 2,700 students captured into the Duke MTMC surveillance research dataset. These students were also included in the Duke MTMC Re-ID dataset extension. © megapixels.cc</div></div></section><section><p>The creation and publication of the Duke MTMC dataset in 2016 was originally funded by the U.S. Army Research Laboratory and the National Science Foundation<a class="footnote_shim" name="[^duke_mtmc_orig]_2"> </a><a href="#[^duke_mtmc_orig]" class="footnote" title="Footnote 6">6</a>. Since 2016 use of the Duke MTMC dataset images have been publicly acknowledged in research funded by or on behalf of the Chinese National University of Defense<a class="footnote_shim" name="[^cn_defense1]_1"> </a><a href="#[^cn_defense1]" class="footnote" title="Footnote 7">7</a><a class="footnote_shim" name="[^cn_defense2]_1"> </a><a href="#[^cn_defense2]" class="footnote" title="Footnote 8">8</a>, IARPA and IBM<a class="footnote_shim" name="[^iarpa_ibm]_1"> </a><a href="#[^iarpa_ibm]" class="footnote" title="Footnote 9">9</a>, and U.S. Department of Homeland Security<a class="footnote_shim" name="[^us_dhs]_1"> </a><a href="#[^us_dhs]" class="footnote" title="Footnote 10">10</a>.</p> +</section><section class='images'><div class='image'><img src='https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/duke_mtmc/assets/duke_mtmc_reid_montage.jpg' alt=' A collection of 1,600 out of the 2,700 students and passersby captured into the Duke MTMC surveillance research dataset. These students were also included in the Duke MTMC Re-ID dataset extension used for person re-identification. © megapixels.cc'><div class='caption'> A collection of 1,600 out of the 2,700 students and passersby captured into the Duke MTMC surveillance research dataset. These students were also included in the Duke MTMC Re-ID dataset extension used for person re-identification. © megapixels.cc</div></div></section><section><p>The creation and publication of the Duke MTMC dataset in 2016 was originally funded by the U.S. Army Research Laboratory and the National Science Foundation<a class="footnote_shim" name="[^duke_mtmc_orig]_2"> </a><a href="#[^duke_mtmc_orig]" class="footnote" title="Footnote 6">6</a>. Since 2016 use of the Duke MTMC dataset images have been publicly acknowledged in research funded by or on behalf of the Chinese National University of Defense<a class="footnote_shim" name="[^cn_defense1]_1"> </a><a href="#[^cn_defense1]" class="footnote" title="Footnote 7">7</a><a class="footnote_shim" name="[^cn_defense2]_1"> </a><a href="#[^cn_defense2]" class="footnote" title="Footnote 8">8</a>, IARPA and IBM<a class="footnote_shim" name="[^iarpa_ibm]_1"> </a><a href="#[^iarpa_ibm]" class="footnote" title="Footnote 9">9</a>, and U.S. Department of Homeland Security<a class="footnote_shim" name="[^us_dhs]_1"> </a><a href="#[^us_dhs]" class="footnote" title="Footnote 10">10</a>.</p> <p>The 8 cameras deployed on Duke's campus were specifically setup to capture students "during periods between lectures, when pedestrian traffic is heavy".<a class="footnote_shim" name="[^duke_mtmc_orig]_3"> </a><a href="#[^duke_mtmc_orig]" class="footnote" title="Footnote 6">6</a> Camera 7 and 2 capture large groups of prospective students and children. Camera 5 was positioned to capture students as they enter and exit Duke University's main chapel. Each camera's location is documented below.</p> </section><section class='images'><div class='image'><img src='https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/duke_mtmc/assets/duke_mtmc_camera_map.jpg' alt=' Duke MTMC camera locations on Duke University campus © megapixels.cc'><div class='caption'> Duke MTMC camera locations on Duke University campus © megapixels.cc</div></div></section><section class='images'><div class='image'><img src='https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/duke_mtmc/assets/duke_mtmc_cameras.jpg' alt=' Duke MTMC camera views for 8 cameras deployed on campus © megapixels.cc'><div class='caption'> Duke MTMC camera views for 8 cameras deployed on campus © megapixels.cc</div></div></section><section class='images'><div class='image'><img src='https://nyc3.digitaloceanspaces.com/megapixels/v1/datasets/duke_mtmc/assets/duke_mtmc_saliencies.jpg' alt=' Duke MTMC pedestrian detection saliency maps for 8 cameras deployed on campus © megapixels.cc'><div class='caption'> Duke MTMC pedestrian detection saliency maps for 8 cameras deployed on campus © megapixels.cc</div></div></section><section> <h3>Who used Duke MTMC Dataset?</h3> @@ -118,7 +117,7 @@ </li><li><a name="[^sensenets_sensetime]" class="footnote_shim"></a><span class="backlinks"><a href="#[^sensenets_sensetime]_1">a</a></span><p>"Attention-Aware Compositional Network for Person Re-identification". 2018. <a href="https://www.semanticscholar.org/paper/Attention-Aware-Compositional-Network-for-Person-Xu-Zhao/14ce502bc19b225466126b256511f9c05cadcb6e">Source</a></p> </li><li><a name="[^sensetime1]" class="footnote_shim"></a><span class="backlinks"><a href="#[^sensetime1]_1">a</a></span><p>"End-to-End Deep Kronecker-Product Matching for Person Re-identification". 2018. <a href="https://www.semanticscholar.org/paper/End-to-End-Deep-Kronecker-Product-Matching-for-Shen-Xiao/947954cafdefd471b75da8c3bb4c21b9e6d57838">source</a></p> </li><li><a name="[^sensetime2]" class="footnote_shim"></a><span class="backlinks"><a href="#[^sensetime2]_1">a</a></span><p>"Person Re-identification with Deep Similarity-Guided Graph Neural Network". 2018. <a href="https://www.semanticscholar.org/paper/Person-Re-identification-with-Deep-Graph-Neural-Shen-Li/08d2a558ea2deb117dd8066e864612bf2899905b">Source</a></p> -</li><li><a name="[^duke_mtmc_orig]" class="footnote_shim"></a><span class="backlinks"><a href="#[^duke_mtmc_orig]_1">a</a><a href="#[^duke_mtmc_orig]_2">b</a><a href="#[^duke_mtmc_orig]_3">c</a></span><p>"Performance Measures and a Data Set for</p> +</li><li><a name="[^duke_mtmc_orig]" class="footnote_shim"></a><span class="backlinks"><a href="#[^duke_mtmc_orig]_1">a</a><a href="#[^duke_mtmc_orig]_2">b</a><a href="#[^duke_mtmc_orig]_3">c</a></span><p>"Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking". 2016. <a href="https://www.semanticscholar.org/paper/Performance-Measures-and-a-Data-Set-for-Tracking-Ristani-Solera/27a2fad58dd8727e280f97036e0d2bc55ef5424c">Source</a></p> </li><li><a name="[^cn_defense1]" class="footnote_shim"></a><span class="backlinks"><a href="#[^cn_defense1]_1">a</a></span><p>"Tracking by Animation: Unsupervised Learning of Multi-Object Attentive Trackers". 2018. <a href="https://www.semanticscholar.org/paper/Tracking-by-Animation%3A-Unsupervised-Learning-of-He-Liu/e90816e1a0e14ea1e7039e0b2782260999aef786">Source</a></p> </li><li><a name="[^cn_defense2]" class="footnote_shim"></a><span class="backlinks"><a href="#[^cn_defense2]_1">a</a></span><p>"Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks". 2018. <a href="https://www.semanticscholar.org/paper/Unsupervised-Multi-Object-Detection-for-Video-Using-He-He/59f357015054bab43fb8cbfd3f3dbf17b1d1f881">Source</a></p> </li><li><a name="[^iarpa_ibm]" class="footnote_shim"></a><span class="backlinks"><a href="#[^iarpa_ibm]_1">a</a></span><p>"Horizontal Pyramid Matching for Person Re-identification". 2019. <a href="https://www.semanticscholar.org/paper/Horizontal-Pyramid-Matching-for-Person-Fu-Wei/c2a5f27d97744bc1f96d7e1074395749e3c59bc8">Source</a></p> diff --git a/site/public/datasets/oxford_town_centre/index.html b/site/public/datasets/oxford_town_centre/index.html index cda1cde5..5379682c 100644 --- a/site/public/datasets/oxford_town_centre/index.html +++ b/site/public/datasets/oxford_town_centre/index.html @@ -46,8 +46,8 @@ <div class='gray'>Website</div> <div><a href='http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold_headpose/project.html' target='_blank' rel='nofollow noopener'>ox.ac.uk</a></div> </div></div><h2>Oxford Town Centre</h2> -<p>The Oxford Town Centre dataset is a CCTV video of pedestrians in a busy downtown area in Oxford used for research and development of activity and face recognition systems.<a class="footnote_shim" name="[^ben_benfold_orig]_1"> </a><a href="#[^ben_benfold_orig]" class="footnote" title="Footnote 1">1</a> The CCTV video was obtained from a public surveillance camera at the corner of Cornmarket and Market St. in Oxford, England and includes approximately 2,200 people. Since its publication in 2009<a class="footnote_shim" name="[^guiding_surveillance]_1"> </a><a href="#[^guiding_surveillance]" class="footnote" title="Footnote 2">2</a> the Oxford Town Centre dataset has been used in over 80 verified research projects including commercial research by Amazon, Disney, OSRAM, and Huawei; and academic research in China, Israel, Russia, Singapore, the US, and Germany among tensomes more.</p> -<p>The Oxford Town Centre dataset is unique in that it uses footage from a public surveillance camera that would otherwise be designated for public safety. The video shows that the pedestrians act normally and unrehearsed indicating lack of consent or notice of participation in the research project.</p> +<p>The Oxford Town Centre dataset is a CCTV video of pedestrians in a busy downtown area in Oxford used for research and development of activity and face recognition systems.<a class="footnote_shim" name="[^ben_benfold_orig]_1"> </a><a href="#[^ben_benfold_orig]" class="footnote" title="Footnote 1">1</a> The CCTV video was obtained from a public surveillance camera at the corner of Cornmarket and Market St. in Oxford, England and includes approximately 2,200 people. Since its publication in 2009<a class="footnote_shim" name="[^guiding_surveillance]_1"> </a><a href="#[^guiding_surveillance]" class="footnote" title="Footnote 2">2</a> the Oxford Town Centre dataset has been used in over 80 verified research projects including commercial research by Amazon, Disney, OSRAM, and Huawei; and academic research in China, Israel, Russia, Singapore, the US, and Germany among dozens more.</p> +<p>The Oxford Town Centre dataset is unique in that it uses footage from a public surveillance camera that would otherwise be designated for public safety. The video shows that the pedestrians act normally and unrehearsed indicating they neither knew of or consented to participation in the research project.</p> </section><section> <h3>Who used TownCentre?</h3> |
