summaryrefslogtreecommitdiff
path: root/app/relay/modules/pix2pix.js
blob: 9db30de12d464a15dbcf135dd87dfd77596e6141 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import path from 'path'

const name = 'pix2pix'
const cwd = process.env.PIX2PIX_CWD || path.join(process.env.HOME, 'code/' + name + '/')

/*
  what are all the tasks that pix2pix has to do?
    - fetch url
    - fetch youtube
  - ffmpeg movie into frames
  - unzip zip file into sequence
    - list sequences
*/

const fetch = {
  type: 'perl',
  script: 'get.pl',
  params: (task) => {
    console.log(task)
    return [ task.module, task.opt.url ]
  },
  listen: (task, line, i) => {
    // relay the new dataset name from youtube-dl or w/e
    if ( line.match(/^created dataset: /) ) {
      let filename = line.split(': ')[1].trim()
      task.dataset = filename.split('.')[0]
      task.opt.filename = filename
      return { type: 'progress', action: 'resolve_dataset', task, }
    }
    return null
  }
}

const combine_folds = {
  type: 'pytorch',
  script: 'datasets/combine_A_and_B.py',
  params: (task) => {
    return [
      '--fold_A', task.module + '/a_b/' + task.dataset + '/A',
      '--fold_B', task.module + '/a_b/' + task.dataset + '/B',
      '--fold_AB', task.module + '/datasets/' + task.dataset,
    ]
  }
}
const train = {
  type: 'pytorch',
  script: 'train.py',
  params: (task) => {
    return [
      '--dataroot', path.join(cwd, 'datasets', task.dataset),
      '--name', task.dataset,
      '--model', 'pix2pix',
      '--loadSize', opt.load_size || 264,
      '--fineSize', 256,
      '--which_model_netG', 'unet_256',
      '--which_direction', 'AtoB',
      '--lambda_B', 100,
      '--dataset_mode', 'aligned',
      '--epoch_count', task.epochs,
      '--which_epoch', 'latest',
      '--continue_train',
      '--no_lsgan',
      '--norm', 'batch',
      '--pool_size', '0',
      '--cortex_module', task.module,
    ]
  },
}
const generate = {
  type: 'pytorch',
  script: 'test.py',
  params: (task) => {
    return [
      '--dataroot', '/sequences/' + task.module + '/' + task.dataset,
      '--name', task.dataset,
      '--start_img', '/sequences/' + task.module + '/' + task.dataset + '/frame_00001.png',
      '--how_many', 1000,
      '--model', 'test',
      '--aspect_ratio', 1.777777,
      '--which_model_netG', 'unet_256',
      '--which_direction', 'AtoB',
      '--dataset_mode', 'test',
      '--loadSize', 256,
      '--fineSize', 256,
      '--norm', 'batch'
    ]
  },
}
const live = {
  type: 'pytorch',
  script: 'live-mogrify.py',
  params: (task) => {
    console.log(task)
    return [
      '--dataroot', path.join(cwd, 'sequences', task.module, task.dataset),
      '--start_img', path.join(cwd, 'sequences', task.module, task.dataset, 'frame_00001.png'),
      '--checkpoint-name', task.checkpoint,
      '--experiment', task.checkpoint,
      '--name', task.checkpoint,
      '--module-name', task.module,
      '--sequence-name', task.dataset,
      '--recursive', '--recursive-frac', 0.1,
      '--sequence', '--sequence-frac', 0.3,
      '--process-frac', 0.5,
      '--transition',
      '--transition-min', 0.05,
      '--how_many', 1000000, '--transition-period', 1000,
      '--loadSize', 256, '--fineSize', 256,
      '--just-copy', '--poll_delay', task.opt.poll_delay || 0.09,
      '--model', 'test',
      '--which_model_netG', 'unet_256',
      '--which_direction', 'AtoB',
      '--dataset_mode', 'recursive',
      '--which_epoch', 'latest',
      '--norm', 'batch',
    ]
  },
}

export default {
  name, cwd,
  activities: {
    combine_folds, train, generate, live,
  }
}