summaryrefslogtreecommitdiff
path: root/js/gif-encode/NeuQuant.js
diff options
context:
space:
mode:
Diffstat (limited to 'js/gif-encode/NeuQuant.js')
-rw-r--r--js/gif-encode/NeuQuant.js538
1 files changed, 538 insertions, 0 deletions
diff --git a/js/gif-encode/NeuQuant.js b/js/gif-encode/NeuQuant.js
new file mode 100644
index 0000000..91424ba
--- /dev/null
+++ b/js/gif-encode/NeuQuant.js
@@ -0,0 +1,538 @@
+/*
+* NeuQuant Neural-Net Quantization Algorithm
+* ------------------------------------------
+*
+* Copyright (c) 1994 Anthony Dekker
+*
+* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See
+* "Kohonen neural networks for optimal colour quantization" in "Network:
+* Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of
+* the algorithm.
+*
+* Any party obtaining a copy of these files from the author, directly or
+* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
+* world-wide, paid up, royalty-free, nonexclusive right and license to deal in
+* this software and documentation files (the "Software"), including without
+* limitation the rights to use, copy, modify, merge, publish, distribute,
+* sublicense, and/or sell copies of the Software, and to permit persons who
+* receive copies from any such party to do so, with the only requirement being
+* that this copyright notice remain intact.
+*/
+
+/*
+* This class handles Neural-Net quantization algorithm
+* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
+* @author Thibault Imbert (AS3 version - bytearray.org)
+* @version 0.1 AS3 implementation
+*/
+
+//import flash.utils.ByteArray;
+
+NeuQuant = function() {
+ var exports = {};
+ var netsize = 128; /* number of colours used */
+
+ /* four primes near 500 - assume no image has a length so large */
+ /* that it is divisible by all four primes */
+
+ var prime1 = 499;
+ var prime2 = 491;
+ var prime3 = 487;
+ var prime4 = 503;
+ var minpicturebytes = (3 * prime4);
+
+ /* minimum size for input image */
+ /*
+ * Program Skeleton ---------------- [select samplefac in range 1..30] [read
+ * image from input file] pic = (unsigned char*) malloc(3*width*height);
+ * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output
+ * image header, using writecolourmap(f)] inxbuild(); write output image using
+ * inxsearch(b,g,r)
+ */
+
+ /*
+ * Network Definitions -------------------
+ */
+
+ var maxnetpos = (netsize - 1);
+ var netbiasshift = 4; /* bias for colour values */
+ var ncycles = 100; /* no. of learning cycles */
+
+ /* defs for freq and bias */
+ var intbiasshift = 16; /* bias for fractions */
+ var intbias = (1 << intbiasshift);
+ var gammashift = 10; /* gamma = 1024 */
+ var gamma = (1 << gammashift);
+ var betashift = 10;
+ var beta = (intbias >> betashift); /* beta = 1/1024 */
+ var betagamma = (intbias << (gammashift - betashift));
+
+ /* defs for decreasing radius factor */
+ var initrad = (netsize >> 3); /* for 256 cols, radius starts */
+ var radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
+ var radiusbias = (1 << radiusbiasshift);
+ var initradius = (initrad * radiusbias); /* and decreases by a */
+ var radiusdec = 30; /* factor of 1/30 each cycle */
+
+ /* defs for decreasing alpha factor */
+ var alphabiasshift = 10; /* alpha starts at 1.0 */
+ var initalpha = (1 << alphabiasshift);
+ var alphadec /* biased by 10 bits */
+
+ /* radbias and alpharadbias used for radpower calculation */
+ var radbiasshift = 8;
+ var radbias = (1 << radbiasshift);
+ var alpharadbshift = (alphabiasshift + radbiasshift);
+
+ var alpharadbias = (1 << alpharadbshift);
+
+ /*
+ * Types and Global Variables --------------------------
+ */
+
+ var thepicture/*ByteArray*//* the input image itself */
+ var lengthcount; /* lengthcount = H*W*3 */
+ var samplefac; /* sampling factor 1..30 */
+
+ // typedef int pixel[4]; /* BGRc */
+ var network; /* the network itself - [netsize][4] */
+ var netindex = new Array();
+
+ /* for network lookup - really 256 */
+ var bias = new Array();
+
+ /* bias and freq arrays for learning */
+ var freq = new Array();
+ var radpower = new Array();
+
+ var NeuQuant = exports.NeuQuant = function NeuQuant(thepic, len, sample) {
+
+ // with no input, assume we'll load in a lobotomized neuquant later.
+ // otherwise, initialize the neural net stuff
+
+ if (thepic && len && sample) {
+ var i;
+ var p;
+
+ thepicture = thepic;
+ lengthcount = len;
+ samplefac = sample;
+
+ network = new Array(netsize);
+
+ for (i = 0; i < netsize; i++) {
+ network[i] = new Array(4);
+ p = network[i];
+ p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
+ freq[i] = intbias / netsize; /* 1/netsize */
+ bias[i] = 0;
+ }
+ }
+ }
+
+ var colorMap = function colorMap() {
+ var map/*ByteArray*/ = [];
+ var index = new Array(netsize);
+ for (var i = 0; i < netsize; i++) {
+ index[network[i][3]] = i;
+ }
+ var k = 0;
+ for (var l = 0; l < netsize; l++) {
+ var j = index[l];
+ map[k++] = (network[j][0]);
+ map[k++] = (network[j][1]);
+ map[k++] = (network[j][2]);
+ }
+ return map;
+ }
+
+ /*
+ * Insertion sort of network and building of netindex[0..255] (to do after
+ * unbias)
+ * -------------------------------------------------------------------------------
+ */
+
+ var inxbuild = function inxbuild() {
+ var i;
+ var j;
+ var smallpos;
+ var smallval;
+ var p;
+ var q;
+ var previouscol
+ var startpos
+
+ previouscol = 0;
+ startpos = 0;
+ for (i = 0; i < netsize; i++) {
+ p = network[i];
+ smallpos = i;
+ smallval = p[1]; /* index on g */
+ /* find smallest in i..netsize-1 */
+ for (j = i + 1; j < netsize; j++) {
+ q = network[j];
+ if (q[1] < smallval) { /* index on g */
+ smallpos = j;
+ smallval = q[1]; /* index on g */
+ }
+ }
+
+ q = network[smallpos];
+ /* swap p (i) and q (smallpos) entries */
+
+ if (i != smallpos) {
+ j = q[0];
+ q[0] = p[0];
+ p[0] = j;
+ j = q[1];
+ q[1] = p[1];
+ p[1] = j;
+ j = q[2];
+ q[2] = p[2];
+ p[2] = j;
+ j = q[3];
+ q[3] = p[3];
+ p[3] = j;
+ }
+
+ /* smallval entry is now in position i */
+
+ if (smallval != previouscol) {
+ netindex[previouscol] = (startpos + i) >> 1;
+
+ for (j = previouscol + 1; j < smallval; j++) netindex[j] = i;
+
+ previouscol = smallval;
+ startpos = i;
+ }
+ }
+
+ netindex[previouscol] = (startpos + maxnetpos) >> 1;
+ for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* really 256 */
+ }
+
+ /*
+ * Main Learning Loop ------------------
+ */
+
+ var learn = function learn() {
+ var i;
+ var j;
+ var b;
+ var g
+ var r;
+ var radius;
+ var rad;
+ var alpha;
+ var step;
+ var delta;
+ var samplepixels;
+ var p/*ByteArray*/;
+ var pix;
+ var lim;
+
+ if (lengthcount < minpicturebytes) samplefac = 1;
+
+ alphadec = 30 + ((samplefac - 1) / 3);
+ p = thepicture;
+ pix = 0;
+ lim = lengthcount;
+ samplepixels = lengthcount / (3 * samplefac);
+ delta = samplepixels / ncycles;
+ alpha = initalpha;
+ radius = initradius;
+
+ rad = radius >> radiusbiasshift;
+ if (rad <= 1) rad = 0;
+
+ for (i = 0; i < rad; i++) radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
+
+ if (lengthcount < minpicturebytes) step = 3;
+ else if ((lengthcount % prime1) != 0) step = 3 * prime1;
+ else if ((lengthcount % prime2) != 0) step = 3 * prime2;
+ else if ((lengthcount % prime3) != 0) step = 3 * prime3;
+ else step = 3 * prime4;
+
+ i = 0;
+
+ while (i < samplepixels) {
+ b = (p[pix + 0] & 0xff) << netbiasshift;
+ g = (p[pix + 1] & 0xff) << netbiasshift;
+ r = (p[pix + 2] & 0xff) << netbiasshift;
+ j = contest(b, g, r);
+
+ altersingle(alpha, j, b, g, r);
+
+ if (rad != 0) alterneigh(rad, j, b, g, r); /* alter neighbours */
+
+ pix += step;
+
+ if (pix >= lim) pix -= lengthcount;
+
+ i++;
+
+ if (delta == 0) delta = 1;
+
+ if (i % delta == 0) {
+ alpha -= alpha / alphadec;
+ radius -= radius / radiusdec;
+ rad = radius >> radiusbiasshift;
+
+ if (rad <= 1) rad = 0;
+
+ for (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
+ }
+ }
+ }
+
+
+ /* Save the neural network so we can load it back in on another worker.
+ */
+ var save = exports.save = function(){
+ var data = {
+ netindex: netindex,
+ netsize: netsize,
+ network: network
+ };
+ return data;
+ }
+ var load = exports.load = function(data){
+ netindex = data.netindex;
+ netsize = data.netsize;
+ network = data.network;
+ }
+
+
+ /*
+ ** Search for BGR values 0..255 (after net is unbiased) and return colour
+ * index
+ * ----------------------------------------------------------------------------
+ */
+
+ var map = exports.map = function map(b, g, r) {
+ var i;
+ var j;
+ var dist
+ var a;
+ var bestd;
+ var p;
+ var best;
+
+ bestd = 1000; /* biggest possible dist is 256*3 */
+ best = -1;
+ i = netindex[g]; /* index on g */
+ j = i - 1; /* start at netindex[g] and work outwards */
+
+ while ((i < netsize) || (j >= 0)) {
+ if (i < netsize) {
+ p = network[i];
+ dist = p[1] - g; /* inx key */
+ if (dist >= bestd) i = netsize; /* stop iter */
+ else {
+ i++;
+
+ if (dist < 0) dist = -dist;
+
+ a = p[0] - b;
+
+ if (a < 0) a = -a;
+
+ dist += a;
+
+ if (dist < bestd) {
+ a = p[2] - r;
+
+ if (a < 0) a = -a;
+
+ dist += a;
+
+ if (dist < bestd) {
+ bestd = dist;
+ best = p[3];
+ }
+ }
+ }
+ }
+ if (j >= 0) {
+ p = network[j];
+
+ dist = g - p[1]; /* inx key - reverse dif */
+
+ if (dist >= bestd) j = -1; /* stop iter */
+ else {
+ j--;
+ if (dist < 0) dist = -dist;
+ a = p[0] - b;
+ if (a < 0) a = -a;
+ dist += a;
+
+ if (dist < bestd) {
+ a = p[2] - r;
+ if (a < 0)a = -a;
+ dist += a;
+ if (dist < bestd) {
+ bestd = dist;
+ best = p[3];
+ }
+ }
+ }
+ }
+ }
+ return best;
+ }
+
+ var process = exports.process = function process() {
+ learn();
+ unbiasnet();
+ inxbuild();
+ return colorMap();
+ }
+
+ /*
+ * Unbias network to give byte values 0..255 and record position i to prepare
+ * for sort
+ * -----------------------------------------------------------------------------------
+ */
+
+ var unbiasnet = function unbiasnet() {
+ var i;
+ var j;
+ for (i = 0; i < netsize; i++) {
+ network[i][0] >>= netbiasshift;
+ network[i][1] >>= netbiasshift;
+ network[i][2] >>= netbiasshift;
+ network[i][3] = i; /* record colour no */
+ }
+ }
+
+ /*
+ * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
+ * radpower[|i-j|]
+ * ---------------------------------------------------------------------------------
+ */
+
+ var alterneigh = function alterneigh(rad, i, b, g, r) {
+ var j;
+ var k;
+ var lo;
+ var hi;
+ var a;
+ var m;
+ var p;
+
+ lo = i - rad;
+ if (lo < -1) lo = -1;
+
+ hi = i + rad;
+
+ if (hi > netsize) hi = netsize;
+
+ j = i + 1;
+ k = i - 1;
+ m = 1;
+
+ while ((j < hi) || (k > lo)) {
+ a = radpower[m++];
+ if (j < hi) {
+ p = network[j++];
+
+ try {
+ p[0] -= (a * (p[0] - b)) / alpharadbias;
+ p[1] -= (a * (p[1] - g)) / alpharadbias;
+ p[2] -= (a * (p[2] - r)) / alpharadbias;
+ } catch (e/*Error*/) {} // prevents 1.3 miscompilation
+ }
+
+ if (k > lo) {
+ p = network[k--];
+ try {
+ p[0] -= (a * (p[0] - b)) / alpharadbias;
+ p[1] -= (a * (p[1] - g)) / alpharadbias;
+ p[2] -= (a * (p[2] - r)) / alpharadbias;
+ } catch (e/*Error*/) {}
+ }
+ }
+ }
+
+ /*
+ * Move neuron i towards biased (b,g,r) by factor alpha
+ * ----------------------------------------------------
+ */
+
+ var altersingle = function altersingle(alpha, i, b, g, r) {
+ /* alter hit neuron */
+ var n = network[i];
+ n[0] -= (alpha * (n[0] - b)) / initalpha;
+ n[1] -= (alpha * (n[1] - g)) / initalpha;
+ n[2] -= (alpha * (n[2] - r)) / initalpha;
+ }
+
+ /*
+ * Search for biased BGR values ----------------------------
+ */
+
+ var contest = function contest(b, g, r) {
+ /* finds closest neuron (min dist) and updates freq */
+ /* finds best neuron (min dist-bias) and returns position */
+ /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
+ /* bias[i] = gamma*((1/netsize)-freq[i]) */
+
+ var i;
+ var dist;
+ var a;
+ var biasdist;
+ var betafreq;
+ var bestpos;
+ var bestbiaspos;
+ var bestd;
+ var bestbiasd;
+ var n;
+
+ bestd = ~(1 << 31);
+ bestbiasd = bestd;
+ bestpos = -1;
+ bestbiaspos = bestpos;
+
+ for (i = 0; i < netsize; i++) {
+ n = network[i];
+ dist = n[0] - b;
+
+ if (dist < 0) dist = -dist;
+
+ a = n[1] - g;
+
+ if (a < 0) a = -a;
+
+ dist += a;
+
+ a = n[2] - r;
+
+ if (a < 0) a = -a;
+
+ dist += a;
+
+ if (dist < bestd) {
+ bestd = dist;
+ bestpos = i;
+ }
+
+ biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
+
+ if (biasdist < bestbiasd) {
+ bestbiasd = biasdist;
+ bestbiaspos = i;
+ }
+
+ betafreq = (freq[i] >> betashift);
+ freq[i] -= betafreq;
+ bias[i] += (betafreq << gammashift);
+ }
+
+ freq[bestpos] += beta;
+ bias[bestpos] -= betagamma;
+ return (bestbiaspos);
+ }
+
+ NeuQuant.apply(this, arguments);
+ return exports;
+}