diff options
| author | Julie Lala <jules@okfoc.us> | 2013-12-18 22:09:25 -0500 |
|---|---|---|
| committer | Julie Lala <jules@okfoc.us> | 2013-12-18 22:09:25 -0500 |
| commit | 36a384f05993d22367127234dc45252ae6a3f4e7 (patch) | |
| tree | 413d0a8c24e993ae481982e35713a80617e72ee9 /js/gif-encode/worker.concat.js | |
| parent | b3b2284ee4fbdd979c4e04c3d7605ff58d873938 (diff) | |
minified
Diffstat (limited to 'js/gif-encode/worker.concat.js')
| -rw-r--r-- | js/gif-encode/worker.concat.js | 1467 |
1 files changed, 1467 insertions, 0 deletions
diff --git a/js/gif-encode/worker.concat.js b/js/gif-encode/worker.concat.js new file mode 100644 index 0000000..d26ba28 --- /dev/null +++ b/js/gif-encode/worker.concat.js @@ -0,0 +1,1467 @@ +/**
+* This class lets you encode animated GIF files
+* Base class : http://www.java2s.com/Code/Java/2D-Graphics-GUI/AnimatedGifEncoder.htm
+* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
+* @author Thibault Imbert (AS3 version - bytearray.org)
+* @version 0.1 AS3 implementation
+*/
+
+//import flash.utils.ByteArray;
+//import flash.display.BitmapData;
+//import flash.display.Bitmap;
+//import org.bytearray.gif.encoder.NeuQuant
+//import flash.net.URLRequestHeader;
+//import flash.net.URLRequestMethod;
+//import flash.net.URLRequest;
+//import flash.net.navigateToURL;
+
+GIFEncoder = function() {
+ for(var i = 0, chr = {}; i < 256; i++) {
+ chr[i] = String.fromCharCode(i);
+ }
+
+ function ByteArray(){
+ this.bin = [];
+ }
+
+ ByteArray.prototype.getData = function(){
+ for(var v = '', l = this.bin.length, i = 0; i < l; i++) {
+ v += chr[this.bin[i]];
+ }
+ return v;
+ }
+ ByteArray.prototype.writeByte = function(val){
+ this.bin.push(val);
+ }
+ ByteArray.prototype.writeUTFBytes = function(string) {
+ for(var l = string.length, i = 0; i < l; i++) {
+ this.writeByte(string.charCodeAt(i));
+ }
+ }
+ ByteArray.prototype.writeBytes = function(array, offset, length) {
+ for(var l = length || array.length, i = offset||0; i < l; i++) {
+ this.writeByte(array[i]);
+ }
+ }
+
+ var exports = {};
+ var width/*int*/ // image size
+ var height/*int*/;
+ var transparent/***/ = null; // transparent color if given
+ var transIndex/*int*/; // transparent index in color table
+ var repeat/*int*/ = -1; // no repeat
+ var delay/*int*/ = 0; // frame delay (hundredths)
+ var started/*Boolean*/ = false; // ready to output frames
+ var out/*ByteArray*/;
+ var image/*Bitmap*/; // current frame
+ var pixels/*ByteArray*/; // BGR byte array from frame
+ var indexedPixels/*ByteArray*/ // converted frame indexed to palette
+ var colorDepth/*int*/; // number of bit planes
+ var colorTab/*ByteArray*/; // RGB palette
+ var usedEntry/*Array*/ = new Array; // active palette entries
+ var palSize/*int*/ = 7; // color table size (bits-1)
+ var dispose/*int*/ = -1; // disposal code (-1 = use default)
+ var closeStream/*Boolean*/ = false; // close stream when finished
+ var firstFrame/*Boolean*/ = true;
+ var sizeSet/*Boolean*/ = false; // if false, get size from first frame
+ var sample/*int*/ = 1; // default sample interval for quantizer
+ var neuquantBrain = null; // allow loading in a prefab neural net
+
+ /**
+ * Sets the delay time between each frame, or changes it for subsequent frames
+ * (applies to last frame added)
+ * int delay time in milliseconds
+ * @param ms
+ */
+
+ var setDelay = exports.setDelay = function setDelay(ms/*int*/) {
+ delay = Math.round(ms / 10);
+ }
+
+ /**
+ * Sets the GIF frame disposal code for the last added frame and any
+ *
+ * subsequent frames. Default is 0 if no transparent color has been set,
+ * otherwise 2.
+ * @param code
+ * int disposal code.
+ */
+
+ var setDispose = exports.setDispose = function setDispose(code/*int*/) {
+ if (code >= 0) dispose = code;
+ }
+
+ /**
+ * Sets the number of times the set of GIF frames should be played. Default is
+ * 1; 0 means play indefinitely. Must be invoked before the first image is
+ * added.
+ *
+ * @param iter
+ * int number of iterations.
+ * @return
+ */
+
+ var setRepeat = exports.setRepeat = function setRepeat(iter/*int*/) {
+ if (iter >= 0) repeat = iter;
+ }
+
+ /**
+ * Sets the transparent color for the last added frame and any subsequent
+ * frames. Since all colors are subject to modification in the quantization
+ * process, the color in the final palette for each frame closest to the given
+ * color becomes the transparent color for that frame. May be set to null to
+ * indicate no transparent color.
+ * @param
+ * Color to be treated as transparent on display.
+ */
+
+ var setTransparent = exports.setTransparent = function setTransparent(c/*Number*/) {
+ transparent = c;
+ }
+
+ /**
+ * The addFrame method takes an incoming BitmapData object to create each frames
+ * @param
+ * BitmapData object to be treated as a GIF's frame
+ */
+
+ /*Boolean*/
+ var addFrame = exports.addFrame = function addFrame(im/*BitmapData*/, is_imageData) {
+ if ((im == null) || ! started || out == null) {
+ throw new Error ("Please call start method before calling addFrame");
+ return false;
+ }
+
+ var ok/*Boolean*/ = true;
+
+ try {
+ if ( ! is_imageData) {
+ image = im.getImageData(0,0, im.canvas.width, im.canvas.height).data;
+ if ( ! sizeSet) {
+ setSize(im.canvas.width, im.canvas.height);
+ }
+ }
+ else {
+ image = im;
+ }
+ getImagePixels(); // convert to correct format if necessary
+ analyzePixels(); // build color table & map pixels
+
+ if (firstFrame) {
+ writeLSD(); // logical screen descriptior
+ writePalette(); // global color table
+ if (repeat >= 0) {
+ // use NS app extension to indicate reps
+ writeNetscapeExt();
+ }
+ }
+
+ writeGraphicCtrlExt(); // write graphic control extension
+ writeImageDesc(); // image descriptor
+ if (!firstFrame) {
+ writePalette(); // local color table
+ }
+ writePixels(); // encode and write pixel data
+ firstFrame = false;
+ }
+ catch (e/*Error*/) {
+ ok = false;
+ }
+ return ok;
+ }
+
+ /**
+ * Adds final trailer to the GIF stream, if you don't call the finish method
+ * the GIF stream will not be valid.
+ */
+
+ /*Boolean*/
+ var finish = exports.finish = function finish() {
+ if ( ! started) {
+ return false;
+ }
+
+ var ok/*Boolean*/ = true;
+ started = false;
+ try {
+ out.writeByte(0x3b); // gif trailer
+ }
+ catch (e/*Error*/) {
+ ok = false;
+ }
+ return ok;
+ }
+
+ /**
+ * Resets some members so that a new stream can be started.
+ * This method is actually called by the start method
+ */
+
+ var reset = function reset () {
+ // reset for subsequent use
+ transIndex = 0;
+ image = null;
+ pixels = null;
+ indexedPixels = null;
+ colorTab = null;
+ closeStream = false;
+ firstFrame = true;
+ }
+
+ /**
+ * * Sets frame rate in frames per second. Equivalent to
+ * <code>setDelay(1000/fps)</code>.
+ * @param fps
+ * float frame rate (frames per second)
+ */
+
+ var setFrameRate = exports.setFrameRate = function setFrameRate(fps/*Number*/) {
+ if (fps != 0xf) {
+ delay = Math.round(100/fps);
+ }
+ }
+
+ /**
+ * Sets quality of color quantization (conversion of images to the maximum 256
+ * colors allowed by the GIF specification). Lower values (minimum = 1)
+ * produce better colors, but slow processing significantly. 10 is the
+ * default, and produces good color mapping at reasonable speeds. Values
+ * greater than 20 do not yield significant improvements in speed.
+ * @param quality
+ * int greater than 0.
+ * @return
+ */
+
+ var setQuality = exports.setQuality = function setQuality(quality/*int*/) {
+ sample = Math.max(1, quality);
+ }
+
+ /**
+ * Sets the GIF frame size. The default size is the size of the first frame
+ * added if this method is not invoked.
+ * @param w
+ * int frame width.
+ * @param h
+ * int frame width.
+ */
+
+ var setSize = exports.setSize = function setSize(w/*int*/, h/*int*/) {
+ if (started && !firstFrame) {
+ return;
+ }
+ width = w;
+ height = h;
+ if (width < 1) width = 320;
+ if (height < 1) height = 240;
+ sizeSet = true;
+ }
+
+ /**
+ * After running the Neuquant on some test frames, it can be exported and then loaded
+ * into an uninitialized NQ instance on another worker and used accordingly.
+ */
+ var setNeuquant = exports.setNeuquant = function setNeuquant(neuquant, colors){
+ neuquantBrain = neuquant;
+ colorTab = colors;
+ }
+
+ /**
+ * Initiates GIF file creation on the given stream.
+ * @param os
+ * OutputStream on which GIF images are written.
+ * @return false if initial write failed.
+ */
+
+ var start = exports.start = function start() {
+ reset();
+ var ok/*Boolean*/ = true;
+ closeStream = false;
+ out = new ByteArray;
+ try {
+ out.writeUTFBytes("GIF89a"); // header
+ } catch (e/*Error*/) {
+ ok = false;
+ }
+
+ return started = ok;
+ }
+
+ var cont = exports.cont = function cont() {
+ reset();
+ var ok = true;
+ closeStream = false;
+ out = new ByteArray ();
+ return started = ok;
+ }
+
+ /**
+ * Analyzes image colors and creates color map.
+ */
+
+ var analyzePixels = function analyzePixels() {
+ var len = pixels.length;
+ var nPix = len / 3;
+ indexedPixels = [];
+ // initialize quantizer
+
+ var nq;
+ if (neuquantBrain && colorTab) {
+ nq = new NeuQuant();
+ nq.load(neuquantBrain);
+ }
+ else {
+ nq = new NeuQuant (pixels, len, sample);
+ colorTab = nq.process(); // create reduced palette
+ }
+
+ // map image pixels to new palette
+ var k = 0;
+ for (var j = 0; j < nPix; j++) {
+ var index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff);
+ usedEntry[index] = true;
+ indexedPixels[j] = index;
+ }
+ pixels = null;
+ colorDepth = 8;
+ palSize = 7;
+
+ // get closest match to transparent color if specified
+ if (transparent != null) {
+ transIndex = findClosest(transparent);
+ }
+ }
+
+ /**
+ * Returns index of palette color closest to c
+ */
+
+ var findClosest = function findClosest(c/*Number*/) {
+ if (colorTab == null) return -1;
+ var r = (c & 0xFF0000) >> 16;
+ var g = (c & 0x00FF00) >> 8;
+ var b = (c & 0x0000FF);
+ var minpos = 0;
+ var dmin = 256 * 256 * 256;
+ var len = colorTab.length;
+
+ for (var i = 0; i < len;) {
+ var dr = r - (colorTab[i++] & 0xff);
+ var dg = g - (colorTab[i++] & 0xff);
+ var db = b - (colorTab[i] & 0xff);
+ var d = dr * dr + dg * dg + db * db;
+ var index = i / 3;
+ if (usedEntry[index] && (d < dmin)) {
+ dmin = d;
+ minpos = index;
+ }
+ i++;
+ }
+ return minpos;
+ }
+
+ /**
+ * Extracts image pixels into byte array "pixels
+ */
+
+ var getImagePixels = function getImagePixels() {
+ var w = width;
+ var h = height;
+ pixels = [];
+ var data = image;
+ var count/*int*/ = 0;
+
+ for ( var i/*int*/ = 0; i < h; i++ ) {
+ for (var j/*int*/ = 0; j < w; j++ ) {
+ var b = (i*w*4)+j*4;
+ pixels[count++] = data[b];
+ pixels[count++] = data[b+1];
+ pixels[count++] = data[b+2];
+ }
+ }
+ }
+
+ /**
+ * Writes Graphic Control Extension
+ */
+
+ var writeGraphicCtrlExt = function writeGraphicCtrlExt() {
+ out.writeByte(0x21); // extension introducer
+ out.writeByte(0xf9); // GCE label
+ out.writeByte(4); // data block size
+ var transp/*int*/
+ var disp/*int*/;
+ if (transparent == null) {
+ transp = 0;
+ disp = 0; // dispose = no action
+ }
+ else {
+ transp = 1;
+ disp = 2; // force clear if using transparent color
+ }
+ if (dispose >= 0) {
+ disp = dispose & 7; // user override
+ }
+ disp <<= 2;
+ // packed fields
+ out.writeByte(0 | // 1:3 reserved
+ disp | // 4:6 disposal
+ 0 | // 7 user input - 0 = none
+ transp); // 8 transparency flag
+
+ WriteShort(delay); // delay x 1/100 sec
+ out.writeByte(transIndex); // transparent color index
+ out.writeByte(0); // block terminator
+ }
+
+ /**
+ * Writes Image Descriptor
+ */
+
+ var writeImageDesc = function writeImageDesc() {
+ out.writeByte(0x2c); // image separator
+ WriteShort(0); // image position x,y = 0,0
+ WriteShort(0);
+ WriteShort(width); // image size
+ WriteShort(height);
+
+ // packed fields
+ if (firstFrame) {
+ // no LCT - GCT is used for first (or only) frame
+ out.writeByte(0);
+ }
+ else {
+ // specify normal LCT
+ out.writeByte(0x80 | // 1 local color table 1=yes
+ 0 | // 2 interlace - 0=no
+ 0 | // 3 sorted - 0=no
+ 0 | // 4-5 reserved
+ palSize); // 6-8 size of color table
+ }
+ }
+
+ /**
+ * Writes Logical Screen Descriptor
+ */
+
+ var writeLSD = function writeLSD() {
+ // logical screen size
+ WriteShort(width);
+ WriteShort(height);
+ // packed fields
+ out.writeByte((0x80 | // 1 : global color table flag = 1 (gct used)
+ 0x70 | // 2-4 : color resolution = 7
+ 0x00 | // 5 : gct sort flag = 0
+ palSize)); // 6-8 : gct size
+
+ out.writeByte(0); // background color index
+ out.writeByte(0); // pixel aspect ratio - assume 1:1
+ }
+
+ /**
+ * Writes Netscape application extension to define repeat count.
+ */
+
+ var writeNetscapeExt = function writeNetscapeExt() {
+ out.writeByte(0x21); // extension introducer
+ out.writeByte(0xff); // app extension label
+ out.writeByte(11); // block size
+ out.writeUTFBytes("NETSCAPE" + "2.0"); // app id + auth code
+ out.writeByte(3); // sub-block size
+ out.writeByte(1); // loop sub-block id
+ WriteShort(repeat); // loop count (extra iterations, 0=repeat forever)
+ out.writeByte(0); // block terminator
+ }
+
+ /**
+ * Writes color table
+ */
+ var writePalette = function writePalette() {
+ out.writeBytes(colorTab);
+ var n/*int*/ = (3 * 256) - colorTab.length;
+ for (var i/*int*/ = 0; i < n; i++) {
+ out.writeByte(0);
+ }
+ }
+
+ var WriteShort = function WriteShort (pValue/*int*/) {
+ out.writeByte( pValue & 0xFF );
+ out.writeByte( (pValue >> 8) & 0xFF);
+ }
+
+ /**
+ * Encodes and writes pixel data
+ */
+ var writePixels = function writePixels() {
+ var myencoder = new LZWEncoder(width, height, indexedPixels, colorDepth);
+ myencoder.encode(out);
+ }
+
+ /**
+ * retrieves the GIF stream
+ */
+ var stream = exports.stream = function stream () {
+ return out;
+ }
+
+ var setProperties = exports.setProperties = function setProperties(has_start, is_first) {
+ started = has_start;
+ firstFrame = is_first;
+ }
+
+ return exports;
+}
+
+;/**
+* This class handles LZW encoding
+* Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
+* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
+* @author Thibault Imbert (AS3 version - bytearray.org)
+* @version 0.1 AS3 implementation
+*/
+
+//import flash.utils.ByteArray;
+
+LZWEncoder = function()
+{
+ var exports = {};
+ /*private_static*/ var EOF/*int*/ = -1;
+ /*private*/ var imgW/*int*/;
+ /*private*/ var imgH/*int*/
+ /*private*/ var pixAry/*ByteArray*/;
+ /*private*/ var initCodeSize/*int*/;
+ /*private*/ var remaining/*int*/;
+ /*private*/ var curPixel/*int*/;
+
+ // GIFCOMPR.C - GIF Image compression routines
+ // Lempel-Ziv compression based on 'compress'. GIF modifications by
+ // David Rowley (mgardi@watdcsu.waterloo.edu)
+ // General DEFINEs
+
+ /*private_static*/ var BITS/*int*/ = 12;
+ /*private_static*/ var HSIZE/*int*/ = 5003; // 80% occupancy
+
+ // GIF Image compression - modified 'compress'
+ // Based on: compress.c - File compression ala IEEE Computer, June 1984.
+ // By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
+ // Jim McKie (decvax!mcvax!jim)
+ // Steve Davies (decvax!vax135!petsd!peora!srd)
+ // Ken Turkowski (decvax!decwrl!turtlevax!ken)
+ // James A. Woods (decvax!ihnp4!ames!jaw)
+ // Joe Orost (decvax!vax135!petsd!joe)
+
+ /*private*/ var n_bits/*int*/ // number of bits/code
+ /*private*/ var maxbits/*int*/ = BITS; // user settable max # bits/code
+ /*private*/ var maxcode/*int*/ // maximum code, given n_bits
+ /*private*/ var maxmaxcode/*int*/ = 1 << BITS; // should NEVER generate this code
+ /*private*/ var htab/*Array*/ = new Array;
+ /*private*/ var codetab/*Array*/ = new Array;
+ /*private*/ var hsize/*int*/ = HSIZE; // for dynamic table sizing
+ /*private*/ var free_ent/*int*/ = 0; // first unused entry
+
+ // block compression parameters -- after all codes are used up,
+ // and compression rate changes, start over.
+
+ /*private*/ var clear_flg/*Boolean*/ = false;
+
+ // Algorithm: use open addressing double hashing (no chaining) on the
+ // prefix code / next character combination. We do a variant of Knuth's
+ // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
+ // secondary probe. Here, the modular division first probe is gives way
+ // to a faster exclusive-or manipulation. Also do block compression with
+ // an adaptive reset, whereby the code table is cleared when the compression
+ // ratio decreases, but after the table fills. The variable-length output
+ // codes are re-sized at this point, and a special CLEAR code is generated
+ // for the decompressor. Late addition: construct the table according to
+ // file size for noticeable speed improvement on small files. Please direct
+ // questions about this implementation to ames!jaw.
+
+ /*private*/ var g_init_bits/*int*/;
+ /*private*/ var ClearCode/*int*/;
+ /*private*/ var EOFCode/*int*/;
+
+ // output
+ // Output the given code.
+ // Inputs:
+ // code: A n_bits-bit integer. If == -1, then EOF. This assumes
+ // that n_bits =< wordsize - 1.
+ // Outputs:
+ // Outputs code to the file.
+ // Assumptions:
+ // Chars are 8 bits long.
+ // Algorithm:
+ // Maintain a BITS character long buffer (so that 8 codes will
+ // fit in it exactly). Use the VAX insv instruction to insert each
+ // code in turn. When the buffer fills up empty it and start over.
+
+ /*private*/ var cur_accum/*int*/ = 0;
+ /*private*/ var cur_bits/*int*/ = 0;
+ /*private*/ var masks/*Array*/ = [ 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF ];
+
+ // Number of characters so far in this 'packet'
+ /*private*/ var a_count/*int*/;
+
+ // Define the storage for the packet accumulator
+ /*private*/ var accum/*ByteArray*/ = [];
+
+ var LZWEncoder = exports.LZWEncoder = function LZWEncoder (width/*int*/, height/*int*/, pixels/*ByteArray*/, color_depth/*int*/)
+ {
+
+ imgW = width;
+ imgH = height;
+ pixAry = pixels;
+ initCodeSize = Math.max(2, color_depth);
+
+ }
+
+ // Add a character to the end of the current packet, and if it is 254
+ // characters, flush the packet to disk.
+ var char_out = function char_out(c/*Number*/, outs/*ByteArray*/)/*void*/
+ {
+ accum[a_count++] = c;
+ if (a_count >= 254) flush_char(outs);
+
+ }
+
+ // Clear out the hash table
+ // table clear for block compress
+
+ var cl_block = function cl_block(outs/*ByteArray*/)/*void*/
+ {
+
+ cl_hash(hsize);
+ free_ent = ClearCode + 2;
+ clear_flg = true;
+ output(ClearCode, outs);
+
+ }
+
+ // reset code table
+ var cl_hash = function cl_hash(hsize/*int*/)/*void*/
+ {
+
+ for (var i/*int*/ = 0; i < hsize; ++i) htab[i] = -1;
+
+ }
+
+ var compress = exports.compress = function compress(init_bits/*int*/, outs/*ByteArray*/)/*void*/
+
+ {
+ var fcode/*int*/;
+ var i/*int*/ /* = 0 */;
+ var c/*int*/;
+ var ent/*int*/;
+ var disp/*int*/;
+ var hsize_reg/*int*/;
+ var hshift/*int*/;
+
+ // Set up the globals: g_init_bits - initial number of bits
+ g_init_bits = init_bits;
+
+ // Set up the necessary values
+ clear_flg = false;
+ n_bits = g_init_bits;
+ maxcode = MAXCODE(n_bits);
+
+ ClearCode = 1 << (init_bits - 1);
+ EOFCode = ClearCode + 1;
+ free_ent = ClearCode + 2;
+
+ a_count = 0; // clear packet
+
+ ent = nextPixel();
+
+ hshift = 0;
+ for (fcode = hsize; fcode < 65536; fcode *= 2)
+ ++hshift;
+ hshift = 8 - hshift; // set hash code range bound
+
+ hsize_reg = hsize;
+ cl_hash(hsize_reg); // clear hash table
+
+ output(ClearCode, outs);
+
+ outer_loop: while ((c = nextPixel()) != EOF)
+
+ {
+
+ fcode = (c << maxbits) + ent;
+ i = (c << hshift) ^ ent; // xor hashing
+
+ if (htab[i] == fcode)
+ {
+ ent = codetab[i];
+ continue;
+ } else if (htab[i] >= 0) // non-empty slot
+ {
+ disp = hsize_reg - i; // secondary hash (after G. Knott)
+ if (i == 0)
+ disp = 1;
+ do
+ {
+
+ if ((i -= disp) < 0) i += hsize_reg;
+
+ if (htab[i] == fcode)
+ {
+ ent = codetab[i];
+ continue outer_loop;
+ }
+ } while (htab[i] >= 0);
+ }
+
+ output(ent, outs);
+ ent = c;
+ if (free_ent < maxmaxcode)
+ {
+ codetab[i] = free_ent++; // code -> hashtable
+ htab[i] = fcode;
+ } else cl_block(outs);
+ }
+
+ // Put out the final code.
+ output(ent, outs);
+ output(EOFCode, outs);
+
+ }
+
+ // ----------------------------------------------------------------------------
+ var encode = exports.encode = function encode(os/*ByteArray*/)/*void*/
+ {
+ os.writeByte(initCodeSize); // write "initial code size" byte
+ remaining = imgW * imgH; // reset navigation variables
+ curPixel = 0;
+ compress(initCodeSize + 1, os); // compress and write the pixel data
+ os.writeByte(0); // write block terminator
+
+ }
+
+ // Flush the packet to disk, and reset the accumulator
+ var flush_char = function flush_char(outs/*ByteArray*/)/*void*/
+ {
+
+ if (a_count > 0)
+ {
+ outs.writeByte(a_count);
+ outs.writeBytes(accum, 0, a_count);
+ a_count = 0;
+ }
+
+ }
+
+ var MAXCODE = function MAXCODE(n_bits/*int*/)/*int*/
+ {
+
+ return (1 << n_bits) - 1;
+
+ }
+
+ // ----------------------------------------------------------------------------
+ // Return the next pixel from the image
+ // ----------------------------------------------------------------------------
+
+ var nextPixel = function nextPixel()/*int*/
+ {
+
+ if (remaining == 0) return EOF;
+
+ --remaining;
+
+ var pix/*Number*/ = pixAry[curPixel++];
+
+ return pix & 0xff;
+
+ }
+
+ var output = function output(code/*int*/, outs/*ByteArray*/)/*void*/
+
+ {
+ cur_accum &= masks[cur_bits];
+
+ if (cur_bits > 0) cur_accum |= (code << cur_bits);
+ else cur_accum = code;
+
+ cur_bits += n_bits;
+
+ while (cur_bits >= 8)
+
+ {
+
+ char_out((cur_accum & 0xff), outs);
+ cur_accum >>= 8;
+ cur_bits -= 8;
+
+ }
+
+ // If the next entry is going to be too big for the code size,
+ // then increase it, if possible.
+
+ if (free_ent > maxcode || clear_flg)
+ {
+
+ if (clear_flg)
+ {
+
+ maxcode = MAXCODE(n_bits = g_init_bits);
+ clear_flg = false;
+
+ } else
+ {
+
+ ++n_bits;
+
+ if (n_bits == maxbits) maxcode = maxmaxcode;
+
+ else maxcode = MAXCODE(n_bits);
+
+ }
+
+ }
+
+ if (code == EOFCode)
+ {
+
+ // At EOF, write the rest of the buffer.
+ while (cur_bits > 0)
+ {
+
+ char_out((cur_accum & 0xff), outs);
+ cur_accum >>= 8;
+ cur_bits -= 8;
+ }
+
+
+ flush_char(outs);
+
+ }
+
+ }
+ LZWEncoder.apply(this, arguments);
+ return exports;
+}
+
+;/*
+* NeuQuant Neural-Net Quantization Algorithm
+* ------------------------------------------
+*
+* Copyright (c) 1994 Anthony Dekker
+*
+* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See
+* "Kohonen neural networks for optimal colour quantization" in "Network:
+* Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of
+* the algorithm.
+*
+* Any party obtaining a copy of these files from the author, directly or
+* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
+* world-wide, paid up, royalty-free, nonexclusive right and license to deal in
+* this software and documentation files (the "Software"), including without
+* limitation the rights to use, copy, modify, merge, publish, distribute,
+* sublicense, and/or sell copies of the Software, and to permit persons who
+* receive copies from any such party to do so, with the only requirement being
+* that this copyright notice remain intact.
+*/
+
+/*
+* This class handles Neural-Net quantization algorithm
+* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
+* @author Thibault Imbert (AS3 version - bytearray.org)
+* @version 0.1 AS3 implementation
+*/
+
+//import flash.utils.ByteArray;
+
+NeuQuant = function() {
+ var exports = {};
+ var netsize = 128; /* number of colours used */
+
+ /* four primes near 500 - assume no image has a length so large */
+ /* that it is divisible by all four primes */
+
+ var prime1 = 499;
+ var prime2 = 491;
+ var prime3 = 487;
+ var prime4 = 503;
+ var minpicturebytes = (3 * prime4);
+
+ /* minimum size for input image */
+ /*
+ * Program Skeleton ---------------- [select samplefac in range 1..30] [read
+ * image from input file] pic = (unsigned char*) malloc(3*width*height);
+ * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output
+ * image header, using writecolourmap(f)] inxbuild(); write output image using
+ * inxsearch(b,g,r)
+ */
+
+ /*
+ * Network Definitions -------------------
+ */
+
+ var maxnetpos = (netsize - 1);
+ var netbiasshift = 4; /* bias for colour values */
+ var ncycles = 100; /* no. of learning cycles */
+
+ /* defs for freq and bias */
+ var intbiasshift = 16; /* bias for fractions */
+ var intbias = (1 << intbiasshift);
+ var gammashift = 10; /* gamma = 1024 */
+ var gamma = (1 << gammashift);
+ var betashift = 10;
+ var beta = (intbias >> betashift); /* beta = 1/1024 */
+ var betagamma = (intbias << (gammashift - betashift));
+
+ /* defs for decreasing radius factor */
+ var initrad = (netsize >> 3); /* for 256 cols, radius starts */
+ var radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
+ var radiusbias = (1 << radiusbiasshift);
+ var initradius = (initrad * radiusbias); /* and decreases by a */
+ var radiusdec = 30; /* factor of 1/30 each cycle */
+
+ /* defs for decreasing alpha factor */
+ var alphabiasshift = 10; /* alpha starts at 1.0 */
+ var initalpha = (1 << alphabiasshift);
+ var alphadec /* biased by 10 bits */
+
+ /* radbias and alpharadbias used for radpower calculation */
+ var radbiasshift = 8;
+ var radbias = (1 << radbiasshift);
+ var alpharadbshift = (alphabiasshift + radbiasshift);
+
+ var alpharadbias = (1 << alpharadbshift);
+
+ /*
+ * Types and Global Variables --------------------------
+ */
+
+ var thepicture/*ByteArray*//* the input image itself */
+ var lengthcount; /* lengthcount = H*W*3 */
+ var samplefac; /* sampling factor 1..30 */
+
+ // typedef int pixel[4]; /* BGRc */
+ var network; /* the network itself - [netsize][4] */
+ var netindex = new Array();
+
+ /* for network lookup - really 256 */
+ var bias = new Array();
+
+ /* bias and freq arrays for learning */
+ var freq = new Array();
+ var radpower = new Array();
+
+ var NeuQuant = exports.NeuQuant = function NeuQuant(thepic, len, sample) {
+
+ // with no input, assume we'll load in a lobotomized neuquant later.
+ // otherwise, initialize the neural net stuff
+
+ if (thepic && len && sample) {
+ var i;
+ var p;
+
+ thepicture = thepic;
+ lengthcount = len;
+ samplefac = sample;
+
+ network = new Array(netsize);
+
+ for (i = 0; i < netsize; i++) {
+ network[i] = new Array(4);
+ p = network[i];
+ p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
+ freq[i] = intbias / netsize; /* 1/netsize */
+ bias[i] = 0;
+ }
+ }
+ }
+
+ var colorMap = function colorMap() {
+ var map/*ByteArray*/ = [];
+ var index = new Array(netsize);
+ for (var i = 0; i < netsize; i++) {
+ index[network[i][3]] = i;
+ }
+ var k = 0;
+ for (var l = 0; l < netsize; l++) {
+ var j = index[l];
+ map[k++] = (network[j][0]);
+ map[k++] = (network[j][1]);
+ map[k++] = (network[j][2]);
+ }
+ return map;
+ }
+
+ /*
+ * Insertion sort of network and building of netindex[0..255] (to do after
+ * unbias)
+ * -------------------------------------------------------------------------------
+ */
+
+ var inxbuild = function inxbuild() {
+ var i;
+ var j;
+ var smallpos;
+ var smallval;
+ var p;
+ var q;
+ var previouscol
+ var startpos
+
+ previouscol = 0;
+ startpos = 0;
+ for (i = 0; i < netsize; i++) {
+ p = network[i];
+ smallpos = i;
+ smallval = p[1]; /* index on g */
+ /* find smallest in i..netsize-1 */
+ for (j = i + 1; j < netsize; j++) {
+ q = network[j];
+ if (q[1] < smallval) { /* index on g */
+ smallpos = j;
+ smallval = q[1]; /* index on g */
+ }
+ }
+
+ q = network[smallpos];
+ /* swap p (i) and q (smallpos) entries */
+
+ if (i != smallpos) {
+ j = q[0];
+ q[0] = p[0];
+ p[0] = j;
+ j = q[1];
+ q[1] = p[1];
+ p[1] = j;
+ j = q[2];
+ q[2] = p[2];
+ p[2] = j;
+ j = q[3];
+ q[3] = p[3];
+ p[3] = j;
+ }
+
+ /* smallval entry is now in position i */
+
+ if (smallval != previouscol) {
+ netindex[previouscol] = (startpos + i) >> 1;
+
+ for (j = previouscol + 1; j < smallval; j++) netindex[j] = i;
+
+ previouscol = smallval;
+ startpos = i;
+ }
+ }
+
+ netindex[previouscol] = (startpos + maxnetpos) >> 1;
+ for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* really 256 */
+ }
+
+ /*
+ * Main Learning Loop ------------------
+ */
+
+ var learn = function learn() {
+ var i;
+ var j;
+ var b;
+ var g
+ var r;
+ var radius;
+ var rad;
+ var alpha;
+ var step;
+ var delta;
+ var samplepixels;
+ var p/*ByteArray*/;
+ var pix;
+ var lim;
+
+ if (lengthcount < minpicturebytes) samplefac = 1;
+
+ alphadec = 30 + ((samplefac - 1) / 3);
+ p = thepicture;
+ pix = 0;
+ lim = lengthcount;
+ samplepixels = lengthcount / (3 * samplefac);
+ delta = samplepixels / ncycles;
+ alpha = initalpha;
+ radius = initradius;
+
+ rad = radius >> radiusbiasshift;
+ if (rad <= 1) rad = 0;
+
+ for (i = 0; i < rad; i++) radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
+
+ if (lengthcount < minpicturebytes) step = 3;
+ else if ((lengthcount % prime1) != 0) step = 3 * prime1;
+ else if ((lengthcount % prime2) != 0) step = 3 * prime2;
+ else if ((lengthcount % prime3) != 0) step = 3 * prime3;
+ else step = 3 * prime4;
+
+ i = 0;
+
+ while (i < samplepixels) {
+ b = (p[pix + 0] & 0xff) << netbiasshift;
+ g = (p[pix + 1] & 0xff) << netbiasshift;
+ r = (p[pix + 2] & 0xff) << netbiasshift;
+ j = contest(b, g, r);
+
+ altersingle(alpha, j, b, g, r);
+
+ if (rad != 0) alterneigh(rad, j, b, g, r); /* alter neighbours */
+
+ pix += step;
+
+ if (pix >= lim) pix -= lengthcount;
+
+ i++;
+
+ if (delta == 0) delta = 1;
+
+ if (i % delta == 0) {
+ alpha -= alpha / alphadec;
+ radius -= radius / radiusdec;
+ rad = radius >> radiusbiasshift;
+
+ if (rad <= 1) rad = 0;
+
+ for (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
+ }
+ }
+ }
+
+
+ /* Save the neural network so we can load it back in on another worker.
+ */
+ var save = exports.save = function(){
+ var data = {
+ netindex: netindex,
+ netsize: netsize,
+ network: network
+ };
+ return data;
+ }
+ var load = exports.load = function(data){
+ netindex = data.netindex;
+ netsize = data.netsize;
+ network = data.network;
+ }
+
+
+ /*
+ ** Search for BGR values 0..255 (after net is unbiased) and return colour
+ * index
+ * ----------------------------------------------------------------------------
+ */
+
+ var map = exports.map = function map(b, g, r) {
+ var i;
+ var j;
+ var dist
+ var a;
+ var bestd;
+ var p;
+ var best;
+
+ bestd = 1000; /* biggest possible dist is 256*3 */
+ best = -1;
+ i = netindex[g]; /* index on g */
+ j = i - 1; /* start at netindex[g] and work outwards */
+
+ while ((i < netsize) || (j >= 0)) {
+ if (i < netsize) {
+ p = network[i];
+ dist = p[1] - g; /* inx key */
+ if (dist >= bestd) i = netsize; /* stop iter */
+ else {
+ i++;
+
+ if (dist < 0) dist = -dist;
+
+ a = p[0] - b;
+
+ if (a < 0) a = -a;
+
+ dist += a;
+
+ if (dist < bestd) {
+ a = p[2] - r;
+
+ if (a < 0) a = -a;
+
+ dist += a;
+
+ if (dist < bestd) {
+ bestd = dist;
+ best = p[3];
+ }
+ }
+ }
+ }
+ if (j >= 0) {
+ p = network[j];
+
+ dist = g - p[1]; /* inx key - reverse dif */
+
+ if (dist >= bestd) j = -1; /* stop iter */
+ else {
+ j--;
+ if (dist < 0) dist = -dist;
+ a = p[0] - b;
+ if (a < 0) a = -a;
+ dist += a;
+
+ if (dist < bestd) {
+ a = p[2] - r;
+ if (a < 0)a = -a;
+ dist += a;
+ if (dist < bestd) {
+ bestd = dist;
+ best = p[3];
+ }
+ }
+ }
+ }
+ }
+ return best;
+ }
+
+ var process = exports.process = function process() {
+ learn();
+ unbiasnet();
+ inxbuild();
+ return colorMap();
+ }
+
+ /*
+ * Unbias network to give byte values 0..255 and record position i to prepare
+ * for sort
+ * -----------------------------------------------------------------------------------
+ */
+
+ var unbiasnet = function unbiasnet() {
+ var i;
+ var j;
+ for (i = 0; i < netsize; i++) {
+ network[i][0] >>= netbiasshift;
+ network[i][1] >>= netbiasshift;
+ network[i][2] >>= netbiasshift;
+ network[i][3] = i; /* record colour no */
+ }
+ }
+
+ /*
+ * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
+ * radpower[|i-j|]
+ * ---------------------------------------------------------------------------------
+ */
+
+ var alterneigh = function alterneigh(rad, i, b, g, r) {
+ var j;
+ var k;
+ var lo;
+ var hi;
+ var a;
+ var m;
+ var p;
+
+ lo = i - rad;
+ if (lo < -1) lo = -1;
+
+ hi = i + rad;
+
+ if (hi > netsize) hi = netsize;
+
+ j = i + 1;
+ k = i - 1;
+ m = 1;
+
+ while ((j < hi) || (k > lo)) {
+ a = radpower[m++];
+ if (j < hi) {
+ p = network[j++];
+
+ try {
+ p[0] -= (a * (p[0] - b)) / alpharadbias;
+ p[1] -= (a * (p[1] - g)) / alpharadbias;
+ p[2] -= (a * (p[2] - r)) / alpharadbias;
+ } catch (e/*Error*/) {} // prevents 1.3 miscompilation
+ }
+
+ if (k > lo) {
+ p = network[k--];
+ try {
+ p[0] -= (a * (p[0] - b)) / alpharadbias;
+ p[1] -= (a * (p[1] - g)) / alpharadbias;
+ p[2] -= (a * (p[2] - r)) / alpharadbias;
+ } catch (e/*Error*/) {}
+ }
+ }
+ }
+
+ /*
+ * Move neuron i towards biased (b,g,r) by factor alpha
+ * ----------------------------------------------------
+ */
+
+ var altersingle = function altersingle(alpha, i, b, g, r) {
+ /* alter hit neuron */
+ var n = network[i];
+ n[0] -= (alpha * (n[0] - b)) / initalpha;
+ n[1] -= (alpha * (n[1] - g)) / initalpha;
+ n[2] -= (alpha * (n[2] - r)) / initalpha;
+ }
+
+ /*
+ * Search for biased BGR values ----------------------------
+ */
+
+ var contest = function contest(b, g, r) {
+ /* finds closest neuron (min dist) and updates freq */
+ /* finds best neuron (min dist-bias) and returns position */
+ /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
+ /* bias[i] = gamma*((1/netsize)-freq[i]) */
+
+ var i;
+ var dist;
+ var a;
+ var biasdist;
+ var betafreq;
+ var bestpos;
+ var bestbiaspos;
+ var bestd;
+ var bestbiasd;
+ var n;
+
+ bestd = ~(1 << 31);
+ bestbiasd = bestd;
+ bestpos = -1;
+ bestbiaspos = bestpos;
+
+ for (i = 0; i < netsize; i++) {
+ n = network[i];
+ dist = n[0] - b;
+
+ if (dist < 0) dist = -dist;
+
+ a = n[1] - g;
+
+ if (a < 0) a = -a;
+
+ dist += a;
+
+ a = n[2] - r;
+
+ if (a < 0) a = -a;
+
+ dist += a;
+
+ if (dist < bestd) {
+ bestd = dist;
+ bestpos = i;
+ }
+
+ biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
+
+ if (biasdist < bestbiasd) {
+ bestbiasd = biasdist;
+ bestbiaspos = i;
+ }
+
+ betafreq = (freq[i] >> betashift);
+ freq[i] -= betafreq;
+ bias[i] += (betafreq << gammashift);
+ }
+
+ freq[bestpos] += beta;
+ bias[bestpos] -= betagamma;
+ return (bestbiaspos);
+ }
+
+ NeuQuant.apply(this, arguments);
+ return exports;
+}
+;// importScripts('LZWEncoder.js', 'NeuQuant.js', 'GIFEncoder.js'); + +self.onmessage = function(event) { + var data = event.data; + var task = data['task']; + switch (task) { + case 'encode': + encode (data); + break; + case 'quantize': + quantize(data); + break; + } +} + +function log(msg) { + self.postMessage({ + task: 'message', + message: msg + }); +} + +function quantize (data) { + var imageData = data["imageData"]; + var pixels = discardAlphaChannel( imageData.data ); + + var nq = new NeuQuant (pixels, pixels.length, 1); + var colortab = nq.process(); + + self.postMessage({ + task: 'quantize', + neuquant: nq.save(), + colortab: colortab + }); +} + +function discardAlphaChannel( imageData ) { + var pixels = []; + + for ( var i = 0, b = 0, _len = imageData.length; i < _len; b += 4 ) { + pixels[i++] = imageData[b]; + pixels[i++] = imageData[b+1]; + pixels[i++] = imageData[b+2]; + } + return pixels; +} + +function encode (data) { + var frame_index = data["frame_index"]; + var frame_length = data["frame_length"]; + var height = data["height"]; + var width = data["width"]; + var imageData = data["imageData"]; + var delay = data["delay"]; + var neuquant = data["neuquant"]; + var colortab = data["colortab"]; + + // Create a new GIFEncoder for every new worker + var encoder = new GIFEncoder(); + encoder.setRepeat(0); // loop forever + encoder.setQuality(1); + encoder.setSize(width, height); + encoder.setDelay(delay); + + if (frame_index == 0) { + encoder.start(); + } + else { + encoder.cont(); + encoder.setProperties(true, false); //started, firstFrame + } + + // Load the neural net here because the color table gets clobbered by encoder.start(); + encoder.setNeuquant(neuquant, colortab); + encoder.addFrame(imageData, true); + + if(frame_length == frame_index) { + encoder.finish(); + } + + self.postMessage({ + task: 'encode', + frame_index: frame_index, + frame_data: encoder.stream().getData() + }); + // on the page, search for the GIF89a to see the frame_index +}; + |
