1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
import os
import sys
import glob
import h5py
import numpy as np
import params
import tensorflow as tf
import tensorflow_probability as tfp
import tensorflow_hub as hub
import time
from PIL import Image
import visualize as vs
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../live-cortex/rpc/'))
from rpc import CortexRPC
from params import Params
params = Params('params_dense-512.json')
# --------------------------
# Make directories.
# --------------------------
tag = "test"
OUTPUT_DIR = os.path.join('output', tag)
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
# --------------------------
# Load Graph.
# --------------------------
print("Loading module...")
generator = hub.Module(str(params.generator_path))
gen_signature = 'generator'
if 'generator' not in generator.get_signature_names():
gen_signature = 'default'
input_info = generator.get_input_info_dict(gen_signature)
BATCH_SIZE = 1
Z_DIM = input_info['z'].get_shape().as_list()[1]
N_CLASS = input_info['y'].get_shape().as_list()[1]
# --------------------------
# Initializers
# --------------------------
def label_sampler(shape=[BATCH_SIZE, N_CLASS]):
num_classes = 2
label = np.zeros(shape)
for i in range(shape[0]):
for _ in range(random.randint(1, shape[1])):
j = random.randint(0, shape[1]-1)
label[i, j] = random.random()
label[i] /= label[i].sum()
return label
# --------------------------
# More complex ops
# --------------------------
def sin(opts, key, shape):
noise = lerp(opts, key + '_noise', shape)
scale = InterpolatorParam(name=key + '_scale')
time = opts['time'].variable
out = tf.sin(time + noise) * scale.variable
opts[key + '_scale'] = scale
return out
def lerp(opts, key, shape):
a = InterpolatorParam(name=key + '_a', shape=shape)
b = InterpolatorParam(name=key + '_b', shape=shape)
n = InterpolatorParam(name=key + '_n')
out = a.variable * (1 - n.variable) + b.variable * n.variable
opts[key + '_a'] = a
opts[key + '_b'] = b
opts[key + '_n'] = n
return out
class InterpolatorParam:
def __init__(self, name, dtype=tf.float32, shape=(), value=None, type="noise"):
self.scalar = shape == ()
self.shape = shape
self.type = type
self.value = value or np.zeros(shape)
self.variable = tf.placeholder(dtype=dtype, shape=shape)
def assign(self, value):
self.value = value
def randomize(self, num_classes):
if self.type == 'noise':
val = np.random.normal(size=self.shape)
elif self.type == 'label':
val = label_sampler(shape=self.shape)
self.assign(val)
class Interpolator:
def __init__(self):
self.opts = {
'time': InterpolatorParam(name='t', value=time.time()),
'truncation' : InterpolatorParam(name='truncation', value=1.0),
}
def build(self):
lerp_z = lerp(self.opts, 'latent', [BATCH_SIZE, Z_DIM])
sin_z = sin(self.opts, 'sin_z', [BATCH_SIZE, Z_DIM])
lerp_label = lerp(self.opts, 'label', [BATCH_SIZE, N_CLASS])
gen_in = {}
gen_in['truncation'] = self.opts['truncation'].variable
gen_in['z'] = lerp_z + sin_z
gen_in['y'] = lerp_label
gen_img = generator(gen_in, signature=gen_signature)
# Convert generated image to channels_first.
self.gen_img = tf.transpose(gen_img, [0, 3, 1, 2])
def get_feed_dict(self):
opt = {}
for key, param in self.opts.items():
opt[param.variable] = param.value
return opt
def get_state(self):
opt = {}
for key, param in self.opts.items():
if param.scalar:
opt[key] = param.value
return opt
def set_value(self, key, value):
self.opts[key].assign(value)
def on_step(self, i, sess):
gen_images = sess.run(self.gen_img, feed_dict=self.get_feed_dict())
return gen_images
def run(self, cmd, payload):
# do things like create a new B and interpolate to it
pass
class Listener:
def __init__(self):
self.assign_ops = {}
self.interpolator = Interpolator()
self.interpolator.build()
def connect(self):
self.rpc_client = CortexRPC(self.on_get, self.on_set, self.on_ready, self.on_cmd)
def on_set(self, key, value):
self.opts[key].assign(value)
def on_get(self):
return self.interpolator.get_state()
def on_cmd(self, cmd, payload):
print("got command {}".format(cmd))
self.interpolator.run(cmd, payload)
def on_ready(self, rpc_client):
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.tables_initializer())
print("Ready!")
self.rpc_client = rpc_client
self.rpc_client.send_status('processing', True)
for i in range(99999):
print("Step {}".format(i))
gen_time = time.time()
self.interpolator.opts['time'].assign(gen_time)
gen_images = self.interpolator.on_step(i, self.sess)
if gen_images is None:
print("Exiting...")
break
print("Generation time: {:.1f}s".format(time.time() - gen_time))
out_img = vs.data2pil(gen_images[0])
if out_img is not None:
#if out_img.resize_before_sending:
img_to_send = out_img.resize((256, 256), Image.BICUBIC)
meta = {
'i': i,
'sequence_i': i,
'skip_i': 0,
'sequence_len': 99999,
}
self.rpc_client.send_pil_image("frame_{:05d}.png".format(i+1), meta, img_to_send, 'jpg')
self.rpc_client.send_status('processing', False)
self.sess.close()
if __name__ == '__main__':
listener = Listener()
listener.connect()
# layer_name = 'module_apply_' + gen_signature + '/' + params.inv_layer
# gen_encoding = tf.get_default_graph().get_tensor_by_name(layer_name)
# ENC_SHAPE = gen_encoding.get_shape().as_list()[1:]
# encoding = tf.get_variable(name='encoding', dtype=tf.float32,
# shape=[BATCH_SIZE,] + ENC_SHAPE)
# tf.contrib.graph_editor.swap_ts(gen_encoding, tf.convert_to_tensor(encoding))
|