1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
import os
import sys
import glob
import h5py
import numpy as np
import params
import tensorflow as tf
import tensorflow_probability as tfp
import tensorflow_hub as hub
import time
import visualize as vs
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../live-cortex/rpc/'))
from rpc import CortexRPC
from params import Params
params = Params('params_dense.json')
# --------------------------
# Make directories.
# --------------------------
tag = "test"
OUTPUT_DIR = os.path.join('output', tag)
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
# --------------------------
# Load Graph.
# --------------------------
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
sess.run(tf.global_variables_initializer())
sess.run(tf.tables_initializer())
generator = hub.Module(str(params.generator_path))
gen_signature = 'generator'
if 'generator' not in generator.get_signature_names():
gen_signature = 'default'
input_info = generator.get_input_info_dict(gen_signature)
COND_GAN = True
BATCH_SIZE = 1
Z_DIM = input_info['z'].get_shape().as_list()[1]
N_CLASS = input_info['y'].get_shape().as_list()[1]
def sin(opts, key, shape):
noise = lerp(opts, key + '_noise', shape)
scale = InterpolatorParam(name=key + '_scale')
time = opts['global']['time'].variable
out = tf.sin(time + noise) * scale
opts[key] = {
'scale': scale,
}
return out
def lerp(opts, key, shape):
a = InterpolatorParam(name=key + '_a', shape=shape)
b = InterpolatorParam(name=key + '_b', shape=shape)
n = InterpolatorParam(name=key + '_n')
out = a * (1 - n) + b * n
opts[key] = {
'a': a,
'b': b,
'n': n,
}
return out
class InterpolatorParam:
def __init__(self, name, dtype=tf.float32, shape=(), value=None):
self.scalar = shape == ()
self.shape = shape
self.value = value or np.zeros(shape)
self.variable = tf.Variable(self.value, name=name, dtype=dtype, shape=shape)
def assign(value):
self.value = value
return self.variable.assign(value)
def randomize(self):
return self.assign(np.random.normal(size=self.shape))
class Interpolator:
def __init__(self):
self.opts = {
'global': {
'time': InterpolatorParam(name='t', value=time.time())
},
}
self.t = time.time()
def build(self):
lerp_z = lerp(self.opts, 'latent', [BATCH_SIZE, Z_DIM])
sin_z = sin(self.opts, 'sin_z', [BATCH_SIZE, Z_DIM])
lerp_label = lerp(self.opts, 'label', [BATCH_SIZE, N_CLASS])
self.opts['threshold'] = InterpolatorParam('threshold', value=1.0)
gen_in = {}
gen_in['threshold'] = self.opts['threshold'].variable
gen_in['z'] = lerp_z + sin_z
gen_in['y'] = lerp_label
gen_img = generator(gen_in, signature=gen_signature)
# Convert generated image to channels_first.
self.gen_img = tf.transpose(gen_img, [0, 3, 1, 2])
for group, lookup in self.opts.items():
for key, param in group.items():
if param.scalar:
param.assign().eval(session=sess)
else:
param.randomize().eval(session=sess)
def get_state(self):
opt = {}
for group, lookup in self.opts.items():
for key, param in group.items():
if param.scalar:
opt[group][key] = param.value
return opt
def set_value(self, key, value):
self.opts[key].assign(value).eval(session=sess)
def on_step(i):
gen_time = time.time()
self.opts['global']['time'].assign(gen_time).eval(session=sess)
gen_images = sess.run(self.gen_img)
print("Generation time: {:.1f}s".format(time.time() - gen_time))
return gen_images
def run(cmd, payload):
# do things like create a new B and interpolate to it
pass
class Listener:
def __init__(self):
self.interpolator = Interpolator()
self.interpolator.build()
def connect(self):
self.rpc_client = CortexRPC(self.on_get, self.on_set, self.on_ready, self.on_cmd)
def on_set(self, key, value):
self.interpolator.set_value(key, value)
def on_get(self):
return self.interpolator.get_state()
def on_cmd(self, cmd, payload):
print("got command {}".format(cmd))
self.interpolator.run(cmd, payload)
def on_ready(self, rpc_client):
print("Ready!")
self.rpc_client = rpc_client
self.rpc_client.send_status('processing', True)
for i in range(99999):
gen_images = self.interpolator.on_step(i)
if gen_images is None:
break
out_img = vs.data2pil(gen_images[0])
if out_img is not None:
if out_img.resize_before_sending:
out_img.resize((256, 256), Image.BICUBIC)
self.rpc_client.send_pil_image("frame_{:05d}.png".format(i+1), meta, img_to_send, data_opt.output_format)
self.rpc_client.send_status('processing', False)
sess.close()
if __name__ == '__main__':
listener = Listener()
listener.connect()
# layer_name = 'module_apply_' + gen_signature + '/' + params.inv_layer
# gen_encoding = tf.get_default_graph().get_tensor_by_name(layer_name)
# ENC_SHAPE = gen_encoding.get_shape().as_list()[1:]
# encoding = tf.get_variable(name='encoding', dtype=tf.float32,
# shape=[BATCH_SIZE,] + ENC_SHAPE)
# tf.contrib.graph_editor.swap_ts(gen_encoding, tf.convert_to_tensor(encoding))
|