summaryrefslogtreecommitdiff
path: root/cli/app/search/search_dense.py
blob: 645e4bb80af4e476c1060ca4defb86fe909b38c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import glob
import h5py
import itertools
import numpy as np
from io import BytesIO
import os
import json
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

from PIL import Image
import scipy
import sys
import tensorflow as tf
import tensorflow_probability as tfp
import tensorflow_hub as hub
import time
import app.search.visualize as vs
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

from app.search.params import Params, timestamp
from app.settings import app_cfg
from app.utils.file_utils import write_pickle
from app.utils.cortex_utils import upload_bytes_to_cortex

feature_layer_names = {
  '1a': "InceptionV3/Conv2d_1a_3x3",
  '2a': "InceptionV3/Conv2d_2a_3x3",
  '2b': "InceptionV3/Conv2d_2b_3x3",
  '3a': "InceptionV3/Conv2d_3b_1x1",
  '3b': "InceptionV3/Conv2d_3b_1x1",
  '4a': "InceptionV3/Conv2d_4a_3x3",
  '5a': "InceptionV3/Mixed_5a",
  '5b': "InceptionV3/Mixed_5b",
  '5c': "InceptionV3/Mixed_5c",
  '5d': "InceptionV3/Mixed_5d",
  '6a': "InceptionV3/Mixed_6a",
  '6b': "InceptionV3/Mixed_6b",
  '6c': "InceptionV3/Mixed_6c",
  '6d': "InceptionV3/Mixed_6d",
  '6e': "InceptionV3/Mixed_6e",
  '7a': "InceptionV3/Mixed_7a",
  '7b': "InceptionV3/Mixed_7b",
  '7c': "InceptionV3/Mixed_7c",
}

def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), opt_feature_layers=["1a,2a,3a,4a,7a"], opt_save_progress=True):
  # --------------------------
  # Global directories.
  # --------------------------
  LATENT_TAG = 'latent' if params.inv_layer == 'latent' else 'dense'
  BATCH_SIZE = params.batch_size
  SAMPLE_SIZE = params.sample_size
  LOGS_DIR = os.path.join(params.path, LATENT_TAG, 'logs')
  SAMPLES_DIR = os.path.join(params.path, LATENT_TAG, 'samples')

  os.makedirs(LOGS_DIR, exist_ok=True)
  os.makedirs(SAMPLES_DIR, exist_ok=True)
  os.makedirs(app_cfg.DIR_VECTORS, exist_ok=True)

  def one_hot(values):
    return np.eye(N_CLASS)[values]

  summary_writer = tf.summary.FileWriter(LOGS_DIR)
  def log_stats(name, val, it):
    summary = tf.Summary(value=[tf.Summary.Value(tag=name, simple_value=val)])
    summary_writer.add_summary(summary, it)

  # --------------------------
  # Load Graph.
  # --------------------------
  tf.reset_default_graph()

  generator = hub.Module(str(params.generator_path))

  gen_signature = 'generator'
  if 'generator' not in generator.get_signature_names():
    gen_signature = 'default'

  input_info = generator.get_input_info_dict(gen_signature)
  COND_GAN = 'y' in input_info

  if COND_GAN:
    Z_DIM = input_info['z'].get_shape().as_list()[1]
    latent = tf.get_variable(name='latent', dtype=tf.float32,
                             shape=[BATCH_SIZE, Z_DIM])
    N_CLASS = input_info['y'].get_shape().as_list()[1]
    label = tf.get_variable(name='label', dtype=tf.float32,
                            shape=[BATCH_SIZE, N_CLASS])
    gen_in = dict(params.generator_fixed_inputs)
    gen_in['z'] = latent
    gen_in['y'] = label
    gen_img = generator(gen_in, signature=gen_signature)
  else:
    Z_DIM = input_info['default'].get_shape().as_list()[1]
    latent = tf.get_variable(name='latent', dtype=tf.float32,
                             shape=[BATCH_SIZE, Z_DIM])
    if (params.generator_fixed_inputs):
      gen_in = dict(params.generator_fixed_inputs)
      gen_in['z'] = latent
      gen_img = generator(gen_in, signature=gen_signature)
    else:
      gen_img = generator(latent, signature=gen_signature)

  gen_img_orig = gen_img
  
  # Convert generated image to channels_first.
  gen_img = tf.transpose(gen_img, [0, 3, 1, 2])

  # Override intermediate layer.
  if params.inv_layer == 'latent':
    encoding = latent
    ENC_SHAPE = [Z_DIM]
  else:
    layer_name = 'module_apply_' + gen_signature + '/' + params.inv_layer
    gen_encoding = tf.get_default_graph().get_tensor_by_name(layer_name)
    ENC_SHAPE = gen_encoding.get_shape().as_list()[1:]
    encoding = tf.get_variable(name='encoding', dtype=tf.float32,
                               shape=[BATCH_SIZE,] + ENC_SHAPE)
    tf.contrib.graph_editor.swap_ts(gen_encoding, tf.convert_to_tensor(encoding))

  # Step counter.
  inv_step = tf.get_variable('inv_step', initializer=0, trainable=False)

  # Define target image.
  IMG_SHAPE = gen_img.get_shape().as_list()[1:]
  target = tf.get_variable(name='target', dtype=tf.float32,  # normally this is the real [0-255]image
                           shape=[BATCH_SIZE,] + IMG_SHAPE)
  # target_img = (tf.cast(target, tf.float32) / 255.) * 2.0 - 1. # Norm to [-1, 1].
  target_img = target

  # Custom Gradient for Relus.
  if params.custom_grad_relu:
    grad_lambda = tf.train.exponential_decay(0.1, inv_step, params.inv_it / 5,
                                             0.1, staircase=False)
    @tf.custom_gradient
    def relu_custom_grad(x):
      def grad(dy):
        return tf.where(x >= 0, dy,
            grad_lambda*tf.where(dy < 0, dy, tf.zeros_like(dy)))
      return tf.nn.relu(x), grad

    gen_scope = 'module_apply_' + gen_signature + '/'
    for op in tf.get_default_graph().get_operations():
      if 'Relu' in op.name and gen_scope in op.name:
        assert len(op.inputs) == 1
        assert len(op.outputs) == 1
        new_out = relu_custom_grad(op.inputs[0])
        tf.contrib.graph_editor.swap_ts(op.outputs[0], new_out)

  # Operations to clip the values of the encodings.
  if params.clipping or params.stochastic_clipping:
    assert params.clip >= 0
    if params.stochastic_clipping:
      new_enc = tf.where(tf.abs(latent) >= params.clip,
          tf.random.uniform([BATCH_SIZE, Z_DIM], minval=-params.clip,
                            maxval=params.clip), latent)
    else:
      new_enc = tf.clip_by_value(latent, -params.clip, params.clip)
    clip_latent = tf.assign(latent, new_enc)

  # Monitor relu's activation.
  if params.log_activation_layer:
    gen_scope = 'module_apply_' + gen_signature + '/'
    activation_rate = 1.0 - tf.nn.zero_fraction(tf.get_default_graph()\
        .get_tensor_by_name(gen_scope + params.log_activation_layer))

  # --------------------------
  # Reconstruction losses.
  # --------------------------
  # Mse loss for image comparison.
  if params.mse:
    pix_square_diff = tf.square((target_img - gen_img) / 2.0)
    mse_loss = tf.reduce_mean(pix_square_diff)
    img_mse_err = tf.reduce_mean(pix_square_diff, axis=[1,2,3])
  else:
    mse_loss = tf.constant(0.0)
    img_mse_err = tf.constant(0.0)

  # Use custom features for image comparison.
  if params.features:
    feature_extractor = hub.Module(str(params.feature_extractor_path))

    # Convert images from range [-1, 1] channels_first to [0, 1] channels_last.
    gen_img_ch = tf.transpose(gen_img / 2.0 + 0.5, [0, 2, 3, 1])
    target_img_ch = tf.transpose(target_img / 2.0 + 0.5, [0, 2, 3, 1])

    # Convert images to appropriate size for feature extraction.
    height, width = hub.get_expected_image_size(feature_extractor)
    img_w = IMG_SHAPE[0]

    feat_loss, img_feat_err = feature_loss(gen_img_ch, target_img_ch, None, None, height, width)

    feat_loss_a, feat_err_a = feature_loss(gen_img_ch, target_img_ch, 0, 0, height, width)
    feat_loss_b, feat_err_b = feature_loss(gen_img_ch, target_img_ch, img_w - width, 0, height, width)
    feat_loss_c, feat_err_c = feature_loss(gen_img_ch, target_img_ch, 0, img_w - width, height, width)
    feat_loss_d, feat_err_d = feature_loss(gen_img_ch, target_img_ch, img_w - width, img_w - width, height, width)

    feat_loss_quad = feat_loss_a + feat_loss_b + feat_loss_c + feat_loss_d
    img_feat_err_quad = feat_err_a + feat_err_b + feat_err_c + feat_err_d

  else:
    feat_loss = tf.constant(0.0)
    img_feat_err = tf.constant(0.0)
    feat_loss_quad = tf.constant(0.0)
    img_feat_err_quad = tf.constant(0.0)

  img_rec_err = params.lambda_mse * img_mse_err + params.lambda_feat * img_feat_err
  inv_loss = params.lambda_mse * mse_loss + params.lambda_feat * feat_loss
  inv_loss_quad = params.lambda_mse * mse_loss + params.lambda_feat * inv_loss_quad

  # --------------------------
  # Optimizer.
  # --------------------------
  if params.decay_lr:
    lrate = tf.train.exponential_decay(params.lr, inv_step,
        params.inv_it / params.decay_n, 0.1, staircase=True)
  else:
    lrate = tf.constant(params.lr)
  
  # trained_params = [label, latent, encoding]
  trained_params = [latent, encoding]

  optimizer = tf.train.AdamOptimizer(learning_rate=lrate, beta1=0.9, beta2=0.999)
  inv_train_op = optimizer.minimize(inv_loss, var_list=trained_params,
                                    global_step=inv_step)
  reinit_optimizer = tf.variables_initializer(optimizer.variables())

  optimizer_quad = tf.train.AdamOptimizer(learning_rate=params.lr_quad, beta1=0.9, beta2=0.999)
  inv_train_op_quad = optimizer_quad.minimize(inv_loss_quad, var_list=trained_params, global_step=inv_step)
  reinit_optimizer_quad = tf.variables_initializer(optimizer_quad.variables())

  # --------------------------
  # Noise source.
  # --------------------------
  def noise_sampler():
    return np.random.normal(size=[BATCH_SIZE, Z_DIM])

  def small_init(shape=[BATCH_SIZE, Z_DIM]):
    return np.random.uniform(low=params.init_lo, high=params.init_hi, size=shape)

  # --------------------------
  # Dataset.
  # --------------------------
  if params.dataset.endswith('.hdf5'):
    in_file = h5py.File(params.dataset, 'r')
    sample_images = in_file['xtrain'][()]
    sample_labels = in_file['ytrain'][()]
    sample_fns = in_file['fn'][()]
    NUM_IMGS = sample_images.shape[0] # number of images to be inverted.
    INFILL_IMGS = NUM_IMGS
    print("Number of images: {}".format(NUM_IMGS))
    print("Batch size: {}".format(BATCH_SIZE))
    def sample_images_gen():
      for i in range(int(INFILL_IMGS / BATCH_SIZE)):
        i_1, i_2 = i*BATCH_SIZE, (i+1)*BATCH_SIZE
        yield sample_images[i_1:i_2], sample_labels[i_1:i_2]
    image_gen = sample_images_gen()
    sample_latents = in_file['latent']
    def sample_latent_gen():
      for i in range(int(INFILL_IMGS / BATCH_SIZE)):
        i_1, i_2 = i*BATCH_SIZE, (i+1)*BATCH_SIZE
        yield sample_latents[i_1:i_2]
    latent_gen = sample_latent_gen()
    while INFILL_IMGS % BATCH_SIZE != 0:
      REMAINDER = 1 # BATCH_SIZE - (NUM_IMGS % BATCH_SIZE)
      INFILL_IMGS += REMAINDER
      sample_images = np.append(sample_images, sample_images[-REMAINDER:,...], axis=0)
      sample_labels = np.append(sample_labels, sample_labels[-REMAINDER:,...], axis=0)
      sample_latents = np.append(sample_latents, sample_latents[-REMAINDER:,...], axis=0)
      sample_fns = np.append(sample_fns, sample_fns[-REMAINDER:], axis=0)
    assert(INFILL_IMGS % BATCH_SIZE == 0)
  else:
    sys.exit('Unknown dataset {}.'.format(params.dataset))

  # --------------------------
  # Training.
  # --------------------------
  # Start session.
  sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
  sess.run(tf.global_variables_initializer())
  sess.run(tf.tables_initializer())

  if params.max_batches > 0:
    NUM_IMGS_TO_PROCESS = params.max_batches * BATCH_SIZE
  else:
    NUM_IMGS_TO_PROCESS = NUM_IMGS

  # Output file.
  out_file = h5py.File(params.out_dataset, 'w')
  out_images = out_file.create_dataset('xtrain', [NUM_IMGS_TO_PROCESS,] + IMG_SHAPE, dtype='float32')
  out_enc = out_file.create_dataset('encoding', [NUM_IMGS_TO_PROCESS,] + ENC_SHAPE, dtype='float32')
  out_lat = out_file.create_dataset('latent', [NUM_IMGS_TO_PROCESS, Z_DIM], dtype='float32')
  out_fns = out_file.create_dataset('fn', [NUM_IMGS_TO_PROCESS], dtype=h5py.string_dtype())
  if COND_GAN:
    out_labels = out_file.create_dataset('ytrain', (NUM_IMGS_TO_PROCESS, N_CLASS,), dtype='float32')
  out_err = out_file.create_dataset('err', (NUM_IMGS_TO_PROCESS,))

  out_fns[:] = sample_fns[:NUM_IMGS_TO_PROCESS]

  # Gradient descent w.r.t. generator's inputs.
  it = 0
  out_pos = 0
  start_time = time.time()

  for image_batch, label_batch in image_gen:
    sess.run([
      target.assign(image_batch),
      label.assign(label_batch),
      latent.assign(next(latent_gen)),
      inv_step.assign(0),
    ])
    sess.run([
      encoding.assign(gen_encoding),
      reinit_optimizer,
      reinit_optimizer_quad,
    ])

    # Main optimization loop.
    print("Beginning dense iteration...")
    for _ in range(params.inv_it):

      if it < params.inv_it * 0.75:
        _inv_loss, _mse_loss, _feat_loss,\
            _lrate, _ = sess.run([inv_loss, mse_loss, feat_loss,
            lrate, inv_train_op])
      else:
        _inv_loss, _mse_loss, _feat_loss, _ = sess.run([inv_loss_quad, mse_loss, feat_loss_quad, inv_train_op_quad])
        _lrate = params.lr_quad

      if params.clipping or params.stochastic_clipping:
        sess.run(clip_latent)

      # Save logs with training information.
      if it % 500 == 0:
        # Log losses.
        etime = time.time() - start_time
        print('It [{:8d}] time [{:5.1f}] total [{:.4f}] mse [{:.4f}] '
              'feat [{:.4f}] '
              'lr [{:.4f}]'.format(it, etime, _inv_loss, _mse_loss,
              _feat_loss, _lrate))

        sys.stdout.flush()

        # Save target images and reconstructions.
        if opt_save_progress:
          assert SAMPLE_SIZE <= BATCH_SIZE
          gen_time = time.time()
          gen_images  = sess.run(gen_img)
          print("Generation time: {:.1f}s".format(time.time() - gen_time))
          inv_batch = vs.interleave(vs.data2img(image_batch[BATCH_SIZE - SAMPLE_SIZE:]),
                          vs.data2img(gen_images[BATCH_SIZE - SAMPLE_SIZE:]))
          inv_batch = vs.grid_transform(inv_batch)
          vs.save_image('{}/progress_{}_{:04d}.png'.format(SAMPLES_DIR, opt_tag, int(it / 500)), inv_batch)

      it += 1

    # Save images that are ready.
    label_trained, latent_trained, enc_trained, rec_err_trained = sess.run([label, latent, encoding, img_rec_err])

    gen_images  = sess.run(gen_img_orig)
    images = vs.data2img(gen_images)

    # write encoding, latent to pkl file
    for i in range(BATCH_SIZE):
      out_i = out_pos + i
      if out_i >= NUM_IMGS:
        print("{} >= {}, skipping...".format(out_i, NUM_IMGS))
        continue
      sample_fn, ext = os.path.splitext(sample_fns[out_i])
      image = Image.fromarray(images[i])
      fp = BytesIO()
      image.save(fp, format='png')
      data = upload_bytes_to_cortex(params.folder_id, "{}-{}.png".format(sample_fn, opt_tag), fp, "image/png")
      print(json.dumps(data, indent=2))
      if data is not None and 'files' in data:
        file_id = data['files'][0]['id']
        fp_out_pkl = os.path.join(app_cfg.DIR_VECTORS, "file_{}.pkl".format(file_id))
        out_data = {
          'id': file_id,
          'folder_id': params.folder_id,
          'sample_fn': sample_fn,
          'label': label_trained[i],
          'latent': latent_trained[i],
          'encoding': enc_trained[i],
        }
        write_pickle(out_data, fp_out_pkl)
      out_lat[out_i] = latent_trained[i]
      out_enc[out_i] = enc_trained[i]
      out_images[out_i] = image_batch[i]
      out_labels[out_i] = label_trained[i]
      out_err[out_i] = rec_err_trained[i]

    out_pos += BATCH_SIZE
    if params.max_batches > 0 and (out_pos / BATCH_SIZE) >= params.max_batches:
      break

  print('Mean reconstruction error: {}'.format(np.mean(out_err)))
  print('Stdev reconstruction error: {}'.format(np.std(out_err)))
  print('End of inversion.')
  out_file.close()
  sess.close()

def feature_loss(img_a, img_b, y, x, height, width):
  if y is not None:
    img_a = tf.image.crop_to_bounding_box(img_a, y, x, height, width)
    img_b = tf.image.crop_to_bounding_box(img_b, y, x, height, width)
  else:
    img_a = tf.image.resize_images(img_a, [height, width])
    img_b = tf.image.resize_images(img_b, [height, width])

  gen_feat_ex = feature_extractor(dict(images=img_a), as_dict=True, signature='image_feature_vector')
  target_feat_ex = feature_extractor(dict(images=img_b), as_dict=True, signature='image_feature_vector')

  feat_loss = tf.constant(0.0)
  img_feat_err = tf.constant(0.0)

  if type(opt_feature_layers) == str:
    opt_feature_layers = opt_feature_layers.split(',')
  fixed_layers = []
  for layer in opt_feature_layers:
    if ',' in layer:
      fixed_layers += layer.split(',')
    else:
      fixed_layers.append(layer)

  for layer in fixed_layers:
    if layer in feature_layer_names:
      layer_name = feature_layer_names[layer]
      gen_feat = gen_feat_ex[layer_name]
      target_feat = target_feat_ex[layer_name]
      feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
      feat_loss += tf.reduce_mean(feat_square_diff) / len(opt_feature_layers)
      img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) / len(opt_feature_layers)
  return feat_loss, img_feat_err