summaryrefslogtreecommitdiff
path: root/cli/app/search/json.py
blob: 44033533151a6e5a7ae5d4cc79e57cab9a184b6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from os.path import join
from app.settings import app_cfg
from app.utils.file_utils import write_json
from app.search.params import ParamsDict

def make_params_latent(tag):
  return {
    "tag": tag,
    "decay_n": 2, 
    "features": True, 
    "clip": 1.0, 
    "stochastic_clipping": False, 
    "clipping": False, 
    "path": os.path.join(app_cfg.DIR_INVERSES, tag),
    "dataset": os.path.join(app_cfg.DIR_INVERSES, tag, "dataset.hdf5"),
    "out_dataset": os.path.join(app_cfg.DIR_INVERSES, tag, "dataset.latent.hdf5"),
    "inv_layer": "latent", 
    "decay_lr": True, 
    "inv_it": 15000, 
    "generator_path": "https://tfhub.dev/deepmind/biggan-512/2", 
    "attention_map_layer": "Generator_2/attention/Softmax:0",
    "pre_trained_latent": False, 
    "lambda_dist": 0.0, 
    "likeli_loss": True, 
    "init_hi": 0.001, 
    "lr": 0.1, 
    "norm_loss": False, 
    "generator_fixed_inputs": {
      "truncation": 1.0
    }, 
    "log_z_norm": True, 
    "feature_extractor_path": "https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1", 
    "mse": True, 
    "custom_grad_relu": False, 
    "random_label": False, 
    "lambda_feat": 1.0, 
    "init_gen_dist": False, 
    "log_activation_layer": "Generator_2/GBlock/Relu:0", 
    "batch_size": 4, 
    "fixed_z": False, 
    "feature_extractor_output": "InceptionV3/Mixed_7a", 
    "init_lo": -0.001, 
    "lambda_mse": 1.0, 
    "lambda_reg": 0.1, 
    "dist_loss": False, 
    "sample_size": 4, 
    "save_progress": True,
  }

def params_latent(tag):
  return ParamsDict(make_params_latent(tag))

def save_params_latent(fp_out_dir, tag):
  data = make_params_latent(tag)
  fp_out_fn = join(fp_out_dir, "params_latent.json")
  write_json(data, fp_out_fn)

def make_params_dense(tag):
  return {
    "tag": tag,
    "folder_id": folder_id,
    "decay_n": 2, 
    "features": True, 
    "clip": 1.0, 
    "stochastic_clipping": False, 
    "clipping": False, 
    "path": os.path.join(app_cfg.DIR_INVERSES, tag),
    "dataset": os.path.join(app_cfg.DIR_INVERSES, tag, "dataset.latent.hdf5"),
    "inv_layer": "Generator_2/G_Z/Reshape:0", 
    "decay_lr": False, 
    "inv_it": 6000, 
    "generator_path": "https://tfhub.dev/deepmind/biggan-512/2", 
    "attention_map_layer": "Generator_2/attention/Softmax:0",
    "pre_trained_latent": True, 
    "lambda_dist": 10.0, 
    "likeli_loss": False, 
    "init_hi": 0.001, 
    "lr": 0.01, 
    "norm_loss": False, 
    "generator_fixed_inputs": {
      "truncation": 1.0
    }, 
    "log_z_norm": False, 
    "feature_extractor_path": "https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1", 
    "mse": True, 
    "custom_grad_relu": False, 
    "random_label": False, 
    "lambda_feat": 1.0, 
    "init_gen_dist": False, 
    "log_activation_layer": "Generator_2/GBlock/Relu:0", 
    "batch_size": 4, 
    "fixed_z": True, 
    "feature_extractor_output": "InceptionV3/Mixed_7a", 
    "init_lo": -0.001, 
    "lambda_mse": 1.0, 
    "lambda_reg": 0.1, 
    "dist_loss": True, 
    "sample_size": 4, 
    "out_dataset": os.path.join(app_cfg.DIR_INVERSES, tag, "dataset.dense.hdf5"),
    "save_progress": True,
    "max_batches": 0,
  }

def params_dense_dict(tag):
  return ParamsDict(make_params_dense(tag))

def save_params_dense(fp_out_dir, tag):
  data = make_params_dense(tag)
  fp_out_fn = join(fp_out_dir, "params_dense.json")
  write_json(data, fp_out_fn)