summaryrefslogtreecommitdiff
path: root/cli/app/commands/biggan/test.py
blob: 593d5570e6fcb8815f11ad323903be8ba6c9344e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import click

from app.utils import click_utils
from app.settings import app_cfg

import os
from os.path import join
import time
import numpy as np
import random
from scipy.stats import truncnorm
from subprocess import call
import cv2 as cv

from PIL import Image

def image_to_uint8(x):
  """Converts [-1, 1] float array to [0, 255] uint8."""
  x = np.asarray(x)
  x = (256. / 2.) * (x + 1.)
  x = np.clip(x, 0, 255)
  x = x.astype(np.uint8)
  return x

def truncated_z_sample(batch_size, z_dim, truncation):
  values = truncnorm.rvs(-2, 2, size=(batch_size, z_dim))
  return truncation * values

def truncated_z_single(z_dim, truncation):
  values = truncnorm.rvs(-2, 2, size=(1, z_dim))
  return truncation * values

def create_labels(batch_size, vocab_size, num_classes):
  label = np.zeros((batch_size, vocab_size))
  for i in range(batch_size):
    for _ in range(random.randint(1, num_classes)):
      j = random.randint(0, vocab_size-1)
      label[i, j] = random.random()
    label[i] /= label[i].sum()
  return label

def imconvert_uint8(im):
  im = np.clip(((im + 1) / 2.0) * 256, 0, 255)
  im = np.uint8(im)
  return im

def imconvert_float32(im):
  im = np.float32(im)
  im = (im / 256) * 2.0 - 1
  return im

def imread(filename):
  img = cv.imread(filename, cv.IMREAD_UNCHANGED)
  if img is not None:
    if len(img.shape) > 2:
      img = img[...,::-1]
  return img
  
def imwrite(filename, img):
  if img is not None:
    if len(img.shape) > 2:
      img = img[...,::-1]
  return cv.imwrite(filename, img)

def imgrid(imarray, cols=5, pad=1):
  if imarray.dtype != np.uint8:
    raise ValueError('imgrid input imarray must be uint8')
  pad = int(pad)
  assert pad >= 0
  cols = int(cols)
  assert cols >= 1
  N, H, W, C = imarray.shape
  rows = int(np.ceil(N / float(cols)))
  batch_pad = rows * cols - N
  assert batch_pad >= 0
  post_pad = [batch_pad, pad, pad, 0]
  pad_arg = [[0, p] for p in post_pad]
  imarray = np.pad(imarray, pad_arg, 'constant', constant_values=255)
  H += pad
  W += pad
  grid = (imarray
          .reshape(rows, cols, H, W, C)
          .transpose(0, 2, 1, 3, 4)
          .reshape(rows*H, cols*W, C))
  if pad:
    grid = grid[:-pad, :-pad]
  return grid

@click.command('')
@click.option('-i', '--input', 'opt_fp_in', required=True, 
  help='Path to input image')
@click.option('-s', '--dims', 'opt_dims', default=128, type=int,
  help='Dimensions of BigGAN network (128, 256, 512)')
# @click.option('-r', '--recursive', 'opt_recursive', is_flag=True)
@click.pass_context
def cli(ctx, opt_fp_in, opt_dims):
  """
  Search for an image in BigGAN using gradient descent
  """
  if opt_fp_in:
    target_im = imread(opt_fp_in)
    w = target_im.shape[1]
    h = target_im.shape[0]
    if w <= h:
      scale = opt_dims / w
    else:
      scale = opt_dims / h
    print("{} {}".format(w, h))
    target_im = cv.resize(target_im,(0,0), fx=scale, fy=scale)
    phi_target = target_im[:opt_dims,:opt_dims]
    print(phi_target.shape)
    print(phi_target[64,64])
    if phi_target.shape[2] == 4:
      phi_target_a = phi_target[:,:,1:4]
      imwrite('crop.png', phi_target_a)