summaryrefslogtreecommitdiff
path: root/cli/app/commands/biggan/search.py
blob: ec4b0c1751a7d1dee1ce75ae579a97b17a87d1ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import click

from app.utils import click_utils
from app.settings import app_cfg

import os
from os.path import join
import time
import numpy as np
import random
from scipy.stats import truncnorm
from subprocess import call
import cv2 as cv

from PIL import Image

def image_to_uint8(x):
  """Converts [-1, 1] float array to [0, 255] uint8."""
  x = np.asarray(x)
  x = (256. / 2.) * (x + 1.)
  x = np.clip(x, 0, 255)
  x = x.astype(np.uint8)
  return x

def truncated_z_sample(batch_size, z_dim, truncation):
  values = truncnorm.rvs(-2, 2, size=(batch_size, z_dim))
  return truncation * values

def truncated_z_single(z_dim, truncation):
  values = truncnorm.rvs(-2, 2, size=(1, z_dim))
  return truncation * values

def create_labels(batch_size, vocab_size, num_classes):
  label = np.zeros((batch_size, vocab_size))
  for i in range(batch_size):
    for _ in range(random.randint(1, num_classes)):
      j = random.randint(0, vocab_size-1)
      label[i, j] = random.random()
    label[i] /= label[i].sum()
  return label

def imconvert_uint8(im):
  im = np.clip(((im + 1) / 2.0) * 256, 0, 255)
  im = np.uint8(im)
  return im

def imconvert_float32(im):
  im = np.float32(im)
  im = (im / 256) * 2.0 - 1
  return im

def imread(filename):
  img = cv.imread(filename, cv.IMREAD_UNCHANGED)
  if img is not None:
    if len(img.shape) > 2:
      img = img[...,::-1]
  return img
  
def imwrite(filename, img):
  if img is not None:
    if len(img.shape) > 2:
      img = img[...,::-1]
  return cv.imwrite(filename, img)

def imgrid(imarray, cols=5, pad=1):
  if imarray.dtype != np.uint8:
    raise ValueError('imgrid input imarray must be uint8')
  pad = int(pad)
  assert pad >= 0
  cols = int(cols)
  assert cols >= 1
  N, H, W, C = imarray.shape
  rows = int(np.ceil(N / float(cols)))
  batch_pad = rows * cols - N
  assert batch_pad >= 0
  post_pad = [batch_pad, pad, pad, 0]
  pad_arg = [[0, p] for p in post_pad]
  imarray = np.pad(imarray, pad_arg, 'constant', constant_values=255)
  H += pad
  W += pad
  grid = (imarray
          .reshape(rows, cols, H, W, C)
          .transpose(0, 2, 1, 3, 4)
          .reshape(rows*H, cols*W, C))
  if pad:
    grid = grid[:-pad, :-pad]
  return grid

@click.command('')
@click.option('-i', '--input', 'opt_fp_in', required=True, 
  help='Path to input image')
@click.option('-s', '--dims', 'opt_dims', default=128, type=int,
  help='Dimensions of BigGAN network (128, 256, 512)')
# @click.option('-r', '--recursive', 'opt_recursive', is_flag=True)
@click.pass_context
def cli(ctx, opt_fp_in, opt_dims):
  """
  Search for an image in BigGAN using gradient descent
  """
  import tensorflow as tf
  import tensorflow_hub as hub

  module = hub.Module('https://tfhub.dev/deepmind/biggan-' + str(opt_dims) + '/2')
  # module = hub.Module('https://tfhub.dev/deepmind/biggan-256/2')
  # module = hub.Module('https://tfhub.dev/deepmind/biggan-512/2')

  inputs = {}
  for k, v in module.get_input_info_dict().items():
    inputs[k] = tf.compat.v1.placeholder(v.dtype, v.get_shape().as_list(), k, trainable=True)
  input_z = inputs['z']
  input_y = inputs['y']
  input_trunc = inputs['truncation']
  output = module(inputs)

  z_dim = input_z.shape.as_list()[1]
  vocab_size = input_y.shape.as_list()[1]

  sess = tf.compat.v1.Session()
  sess.run(tf.compat.v1.global_variables_initializer())
  sess.run(tf.compat.v1.tables_initializer())

  # scalar truncation value in [0.02, 1.0]

  batch_size = 25
  truncation = 1.0

  z = truncated_z_sample(batch_size, z_dim, truncation/2)

  num_classes = 1
  y = create_labels(batch_size, vocab_size, num_classes)

  fp_frames = "frames_{}".format(int(time.time() * 1000))
  os.makedirs(join(app_cfg.DIR_OUTPUTS, fp_frames), exist_ok=True)

  #results = sess.run(output, feed_dict={input_z: z, input_y: y, input_trunc: truncation})
  #for sample in results:
  #  sample = image_to_uint8(sample)
  #  img = Image.fromarray(sample, "RGB")
  #  fp_img_out = "{}.png".format(int(time.time() * 1000))
  #  img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out))

  if opt_fp_in:
    target_im = imread(opt_fp_in)
    w = target_im.shape[1]
    h = target_im.shape[0]
    if w <= h:
      scale = opt_dims / w
    else:
      scale = opt_dims / h
    #print("{} {}".format(w, h))
    target_im = cv.resize(target_im,(0,0), fx=scale, fy=scale)
    phi_target = imconvert_float32(target_im)
    phi_target = phi_target[:opt_dims,:opt_dims]
    if phi_target.shape[2] == 4:
      phi_target = phi_target[:,:,1:4]
    phi_target = np.expand_dims(phi_target, 0)
    phi_target = np.repeat(phi_target, batch_size, axis=0)
  else:
    z_target = np.repeat(truncated_z_single(z_dim, truncation), batch_size, axis=0)
    y_target = np.repeat(create_labels(1, vocab_size, 1), batch_size, axis=0)
    feed_dict = {input_z: z_target, input_y: y_target, input_trunc: truncation}
    phi_target = sess.run(output, feed_dict=feed_dict)

  target_im = imgrid(imconvert_uint8(phi_target), cols=5)
  imwrite(join(app_cfg.DIR_OUTPUTS, fp_frames, 'frame_0000_target.png'), target_im)

  optimizer = tf.keras.optimizers.Adam()

  #dy_dx = g.gradient(y, x)
  cost = tf.reduce_sum(tf.pow(output - phi_target, 2))
  dc_dz, dc_dy, = tf.gradients(cost, [input_z, input_y])
  #dc_dy, = tf.gradients(cost, [input_y])

  lr_z = 0.0001
  lr_y = 0.000001
  #z = truncated_z_sample(batch_size, z_dim, truncation/2)

  feed_dict = {input_z: z, input_y: y, input_trunc: truncation}
  phi_start = sess.run(output, feed_dict=feed_dict)
  start_im = imgrid(imconvert_uint8(phi_start), cols=5)
  imwrite(join(app_cfg.DIR_OUTPUTS, fp_frames, 'frame_0000_start.png'), start_im)

  cost_op = tf.losses.mean_squared_error(output, phi_target)
  train_op = tf.train.AdamOptimizer(lr_z).minimize(cost_op)

  try:
    for i in range(1000):
      feed_dict = {input_z: z, input_y: y, input_trunc: truncation}
      
      grad_z, grad_y = sess.run([dc_dz, dc_dy], feed_dict=feed_dict)

      #with tf.GradientTape(watch_accessed_variables=False, persistent=True) as g:
      #  g.watch(input_z)
      #  g.watch(input_y)
      #cost = tf.reduce_sum(tf.pow(output - phi_target, 2))
      #dc_dz = g.gradient(cost, input_z)
      #dc_dy = g.gradient(cost, input_y)

      #optimizer.apply_gradients([[dc_dz, input_z], [dc_dy, input_y]])
      #optimizer.apply_gradients([[grad_z, input_z], [grad_y, input_y]])
      print("________")
      #print(z[0][0:10])
      #print(grad_y[0])
      z -= grad_z * lr_z
      y -= grad_y * lr_y

      # decay/attenuate learning rate to 0.05 of the original over 1000 frames
      if i > 100:
        lr_z *= 0.997
      if i > 500:
        lr_y *= 0.999

      indices = np.logical_or(z <= -2*truncation, z >= +2*truncation)
      z[indices] = np.random.randn(np.count_nonzero(indices))
      #print(z[0][0:10])
      if i < 100:
        if i % 30 == 0:
          lr_z *= 1.002
          y = np.clip(y, 0, 1)
          for j in range(batch_size):
            y[j] /= y[j].sum()
      elif i < 300:
        if i % 50 == 0:
          lr_z *= 1.001
          y = np.clip(y, 0, 1)
          for j in range(batch_size):
            y[j] /= y[j].sum()
      elif i < 600:
        if i % 60 == 0:
          y = np.clip(y, 0, 1)
      else:
        if i % 100 == 0:
          y = np.clip(y, 0, 1)

      feed_dict = {input_z: z, input_y: y, input_trunc: truncation}
      phi_guess = sess.run(output, feed_dict=feed_dict)
      guess_im = imgrid(imconvert_uint8(phi_guess), cols=5)
      imwrite(join(app_cfg.DIR_OUTPUTS, fp_frames, 'frame_{:04d}.png'.format(i)), guess_im)
      if i % 20 == 0:
        print('lr: {}, iter: {}, grad_z: {}, grad_y: {}'.format(lr_z, i, np.std(grad_z), np.std(grad_y)))
        #print('lr: {}, iter: {}, grad_z: {}'.format(lr, i, np.std(grad_z)))
        #print('lr: {}, iter: {}, grad_y: {}'.format(lr, i, np.std(grad_y)))
  except KeyboardInterrupt:
    pass

  print("Exporting video...")
  cmd = [
    '/home/lens/bin/ffmpeg',
    '-y', # '-v', 'quiet',
    '-r', '30',
    '-i', join(app_cfg.DIR_OUTPUTS, fp_frames, 'frame_%04d.png'),
    '-pix_fmt', 'yuv420p',
    join(app_cfg.DIR_OUTPUTS, fp_frames + '.mp4')
  ]
  print(' '.join(cmd))
  call(cmd)
  print("Done")