summaryrefslogtreecommitdiff
path: root/inversion/image_inversion_inception.py
diff options
context:
space:
mode:
Diffstat (limited to 'inversion/image_inversion_inception.py')
-rw-r--r--inversion/image_inversion_inception.py46
1 files changed, 26 insertions, 20 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py
index 80c1729..5e68bc9 100644
--- a/inversion/image_inversion_inception.py
+++ b/inversion/image_inversion_inception.py
@@ -220,17 +220,23 @@ if params.features:
gen_feat_ex = feature_extractor(dict(images=gen_img_1), as_dict=True, signature='image_feature_vector')
target_feat_ex = feature_extractor(dict(images=target_img_1), as_dict=True, signature='image_feature_vector')
- # gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
- # target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
- # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- # feat_loss = tf.reduce_mean(feat_square_diff) * 0.5
- # img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5
+ gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
+ target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss = tf.reduce_mean(feat_square_diff) * 0.334
+ img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.334
- # # gen_feat = gen_feat_ex["InceptionV3/Mixed_6b"]
- # # target_feat = target_feat_ex["InceptionV3/Mixed_6b"]
- # # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- # # feat_loss += tf.reduce_mean(feat_square_diff) * 0.16
- # # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.16
+ gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"]
+ target_feat = target_feat_ex["InceptionV3/Mixed_7b"]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.333
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.333
+
+ gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"]
+ target_feat = target_feat_ex["InceptionV3/Mixed_7c"]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.333
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.333
# # gen_feat = gen_feat_ex["InceptionV3/Mixed_5a"]
# # target_feat = target_feat_ex["InceptionV3/Mixed_5a"]
@@ -251,11 +257,11 @@ if params.features:
# # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.17
# conv1 1, conv1 2, conv3 2 and conv4 2
- gen_feat = gen_feat_ex["InceptionV3/Conv2d_1a_3x3"]
- target_feat = target_feat_ex["InceptionV3/Conv2d_1a_3x3"]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss = tf.reduce_mean(feat_square_diff) * 0.5
- img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5
+ # gen_feat = gen_feat_ex["InceptionV3/Conv2d_1a_3x3"]
+ # target_feat = target_feat_ex["InceptionV3/Conv2d_1a_3x3"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss = tf.reduce_mean(feat_square_diff) * 0.5
+ # img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5
# gen_feat = gen_feat_ex["InceptionV3/Conv2d_2a_3x3"]
# target_feat = target_feat_ex["InceptionV3/Conv2d_2a_3x3"]
@@ -275,11 +281,11 @@ if params.features:
# feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
# img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
- gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
- target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.5
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5
+ # gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
+ # target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss += tf.reduce_mean(feat_square_diff) * 0.5
+ # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5
else:
feat_loss = tf.constant(0.0)